These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38439252)

  • 1. Broadband radar absorbing metamaterial based on Al @SiO
    Yang Z; Liu X; Hua Y; Liu C; Zhang Z; Ren Z; Yuan S; Wang Q
    Opt Express; 2024 Feb; 32(4):5206-5213. PubMed ID: 38439252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an Ultra-Wideband Transparent Wave Absorber.
    Dai H; Li S; Dong P; Ma Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on Microwave Absorption Performance Enhancement of Metamaterial/Honeycomb Sandwich Composites in the Low Frequency Band.
    Li S; Huang H; Wu S; Wang J; Lu H; Xing L
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent broadband absorber based on a multilayer ITO conductive film.
    Zheng J; Zheng H; Pang Y; Qu B; Xu Z
    Opt Express; 2023 Jan; 31(3):3731-3742. PubMed ID: 36785359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Ultra-Broadband and Highly-Efficient Metamaterial Absorber with Stand-Up Gradient Impedance Graphene Films.
    Wu B; Chen B; Ma S; Zhang D; Zu HR
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal infrared and broadband microwave stealth glass windows based on multi-band optimization.
    Yang C; Niu S; Chang H; Wang Y; Feng Y; Zhang Y; Li G; Chen S; Qu Y; Xiao L
    Opt Express; 2021 Apr; 29(9):13610-13623. PubMed ID: 33985093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband microwave absorption utilizing water-based metamaterial structures.
    Zhao J; Wei S; Wang C; Chen K; Zhu B; Jiang T; Feng Y
    Opt Express; 2018 Apr; 26(7):8522-8531. PubMed ID: 29715818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-light planar meta-absorber with wideband and full-polarization properties.
    Du Z; Liang J; Cai T; Wang X; Zhang Q; Deng T; Wu B; Mao R; Wang D
    Opt Express; 2021 Mar; 29(5):6434-6444. PubMed ID: 33726164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Local-Chiral Metamaterial: Effective Modulation of Amplitude & Phase for Wideband Polarization-Insensitive Absorption.
    Liu J; Duan Y; Chen W; Shi Y; Di J; Zhang T; Pang H; Huang L; Gong J; Wang J
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):8119-8129. PubMed ID: 38293896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metamaterial based on an inverse double V loaded complementary square split ring resonator for radar and Wi-Fi applications.
    Islam MR; Islam MT; Soliman MS; Baharuddin MH; Mat K; Moubark AM; Almalki SHA
    Sci Rep; 2021 Nov; 11(1):21782. PubMed ID: 34741089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High temperature infrared-radar compatible stealthy metamaterial based on an ultrathin high-entropy alloy.
    Gui B; Wang J; Zhu Y; Zhang L; Feng M; Wang J; Ma H; Qu S
    Opt Express; 2022 Dec; 30(25):45426-45435. PubMed ID: 36522948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Thermally Controlled Multifunctional Metamaterial Absorber with Switchable Wideband Absorption and Transmission at THz Band.
    Wang L; Fu Q; Wen F; Zhou X; Ding X; Wang Y
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Photoexcited Switchable Dual-Function Metamaterial Absorber for Sensing and Wideband Absorption at THz Band.
    Wang L; Xia D; Fu Q; Wang Y; Ding X
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.
    Yoo YJ; Ju S; Park SY; Ju Kim Y; Bong J; Lim T; Kim KW; Rhee JY; Lee Y
    Sci Rep; 2015 Sep; 5():14018. PubMed ID: 26354891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-Based Radar Absorbing Materials toward Stealth Technologies.
    Kim SH; Lee SY; Zhang Y; Park SJ; Gu J
    Adv Sci (Weinh); 2023 Nov; 10(32):e2303104. PubMed ID: 37735148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of diverse coding metamaterial structure for radar cross section reduction applications.
    Ramachandran T; Faruque MRI; Islam MT; Khandaker MU; Al-Mugren KS
    Sci Rep; 2022 Jun; 12(1):10958. PubMed ID: 35768459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization insensitive flexible ultra-broadband terahertz metamaterial absorber.
    Song Z; Ma X; Jiang W; Zhang L; Jiang M; Hu F; Zeng L
    Appl Opt; 2023 Nov; 62(33):8905-8910. PubMed ID: 38038036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D metamaterial ultra-wideband absorber for curved surface.
    Norouzi M; Jarchi S; Ghaffari-Miab M; Esfandiari M; Lalbakhsh A; Koziel S; Reisenfeld S; Moloudian G
    Sci Rep; 2023 Jan; 13(1):1043. PubMed ID: 36658245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.
    Yin X; Long C; Li J; Zhu H; Chen L; Guan J; Li X
    Sci Rep; 2015 Oct; 5():15367. PubMed ID: 26477740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.