These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38439321)

  • 1. Wide-field illumination diffuse optical tomography within a framework of single-pixel time-domain spatial frequency domain imaging.
    Bai W; Dong Y; Zhang Y; Wu Y; Dan M; Liu D; Gao F
    Opt Express; 2024 Feb; 32(4):6104-6120. PubMed ID: 38439321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-wavelength spatial frequency domain diffuse optical tomography using single-pixel imaging based on lock-in photon counting.
    Li T; Qin Z; Hou X; Dan M; Li J; Zhang L; Zhou Z; Gao F
    Opt Express; 2019 Aug; 27(16):23138-23156. PubMed ID: 31510597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperspectral wide-field time domain single-pixel diffuse optical tomography platform.
    Pian Q; Yao R; Intes X
    Biomed Opt Express; 2018 Dec; 9(12):6258-6272. PubMed ID: 31065427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computationally-efficient linear scheme for overlap time-gating spatial frequency domain diffuse optical tomography using an analytical diffusion model.
    Dong Y; Bai W; Zhang Y; Zhang L; Liu D; Gao F
    Biomed Opt Express; 2024 Jun; 15(6):3654-3669. PubMed ID: 38867798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-domain fluorescence-guided diffuse optical tomography based on the third-order simplified harmonics approximation.
    Ma W; Zhang W; Yi X; Li J; Wu L; Wang X; Zhang L; Zhou Z; Zhao H; Gao F
    Appl Opt; 2012 Dec; 51(36):8656-68. PubMed ID: 23262607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency domain photon migration in the delta- P1 approximation: analysis of ballistic, transport, and diffuse regimes.
    You JS; Hayakawa CK; Venugopalan V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021903. PubMed ID: 16196600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide-field fluorescence tomography with composited epi-illumination of multi-frequency sinusoidal patterns.
    Li T; Qin Z; Chen W; Zhao H; Yan P; Zhao K; Gao F
    Appl Opt; 2017 Oct; 56(29):8283-8290. PubMed ID: 29047695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-learning approach to stratified reconstructions of tissue absorption and scattering in time-domain spatial frequency domain imaging.
    Zhang Y; Bai W; Dong Y; Dan M; Liu D; Gao F
    J Biomed Opt; 2024 Mar; 29(3):036002. PubMed ID: 38476220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical sampling depth in the spatial frequency domain.
    Hayakawa CK; Karrobi K; Pera V; Roblyer D; Venugopalan V
    J Biomed Opt; 2019 Jul; 24(7):. PubMed ID: 30218504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles.
    Cheng X; Chen H; Sie EJ; Marsili F; Boas DA
    J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element simulation of light transfer in turbid media under structured illumination.
    Hu D; Lu R; Ying Y
    Appl Opt; 2017 Jul; 56(21):6035-6042. PubMed ID: 29047929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profile-based intensity and frequency corrections for single-snapshot spatial frequency domain imaging.
    Dan M; Liu M; Bai W; Gao F
    Opt Express; 2021 Apr; 29(9):12833-12848. PubMed ID: 33985031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved topographic reconstruction of turbid media in the spatial frequency domain including the determination of the reduced scattering and absorption coefficients.
    Geiger S; Hank P; Kienle A
    J Opt Soc Am A Opt Image Sci Vis; 2023 Feb; 40(2):294-304. PubMed ID: 36821199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reference-free determination of tissue absorption coefficient by modulation transfer function characterization in spatial frequency domain.
    Chen W; Zhao H; Li T; Yan P; Zhao K; Qi C; Gao F
    Biomed Eng Online; 2017 Aug; 16(1):100. PubMed ID: 28789661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery.
    Lee MW; Hung CH; Liao JL; Cheng NY; Hou MF; Tseng SH
    Biomed Opt Express; 2014 Oct; 5(10):3628-39. PubMed ID: 25360378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation.
    Yao R; Intes X; Fang Q
    Biomed Opt Express; 2016 Jan; 7(1):171-84. PubMed ID: 26819826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algorithms and instrumentation for rapid spatial frequency domain fluorescence diffuse optical imaging.
    Chong SH; Markel VA; Parthasarathy AB; Ong YH; Abramson K; Moscatelli FA; Yodh AG
    J Biomed Opt; 2022 Nov; 27(11):. PubMed ID: 36348511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time domain functional NIRS imaging for human brain mapping.
    Torricelli A; Contini D; Pifferi A; Caffini M; Re R; Zucchelli L; Spinelli L
    Neuroimage; 2014 Jan; 85 Pt 1():28-50. PubMed ID: 23747285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging the optical properties of turbid media with single-pixel detection based on the Kubelka-Munk model.
    Lenz AJM; Clemente P; Climent V; Lancis J; Tajahuerce E
    Opt Lett; 2019 Oct; 44(19):4797-4800. PubMed ID: 31568445
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.