These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38439386)

  • 1. Compact pupil-expansion AR-HUD based on surface-relief grating.
    Dai G; Yang H; Yin L; Ren K; Liu J; Zhang X; Zhang J
    Opt Express; 2024 Feb; 32(5):6917-6928. PubMed ID: 38439386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization.
    Ni D; Cheng D; Liu Y; Wang X; Yao C; Yang T; Chi C; Wang Y
    Opt Express; 2022 Jul; 30(14):24523-24543. PubMed ID: 36237005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angular uniformity improvement of diffractive waveguide display based on region geometry optimization.
    Li Z; Gao C; Li H; Wu R; Liu X
    Appl Opt; 2024 Apr; 63(10):2494-2502. PubMed ID: 38568528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-efficiency and compact two-dimensional exit pupil expansion design for diffractive waveguide based on polarization volume grating.
    Weng Y; Zhang Y; Wang W; Gu Y; Wang C; Wei R; Zhang L; Wang B
    Opt Express; 2023 Feb; 31(4):6601-6614. PubMed ID: 36823912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holographic curved waveguide combiner for HUD/AR with 1-D pupil expansion.
    Draper CT; Blanche PA
    Opt Express; 2022 Jan; 30(2):2503-2516. PubMed ID: 35209388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compensated DOE in a VHG-based waveguide display to improve uniformity.
    Guo M; Guo Y; Cai J; Wang Z; Lv G; Feng Q
    Opt Express; 2024 May; 32(10):18017-18032. PubMed ID: 38858968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holographic waveguide HUD with in-line pupil expansion and 2D FOV expansion.
    Bigler CM; Mann MS; Blanche PA
    Appl Opt; 2019 Dec; 58(34):G326-G331. PubMed ID: 31873517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a head-up display based on freeform reflective systems for automotive applications.
    Wei S; Fan Z; Zhu Z; Ma D
    Appl Opt; 2019 Mar; 58(7):1675-1681. PubMed ID: 30874198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of gradient period polarization volume gratings for augmented reality displays.
    Yang C; Wei R; Yang W; Weng Y; Gu Y; Wang C; Shen Z; Wang B; Zhang Y
    Opt Express; 2024 Jun; 32(12):21243-21257. PubMed ID: 38859483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented reality display with high eyebox uniformity over the full field of view based on a random mask grating.
    Wu Y; Pan C; Lu C; Zhang Y; Zhang L; Huang Z
    Opt Express; 2024 May; 32(10):17409-17423. PubMed ID: 38858925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated design of freeform imaging systems for automotive heads-up display applications.
    Fan R; Wei S; Ji H; Qian Z; Tan H; Mo Y; Ma D
    Opt Express; 2023 Mar; 31(6):10758-10774. PubMed ID: 37157616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics.
    Liu Z; Pang Y; Pan C; Huang Z
    Opt Express; 2017 Nov; 25(24):30720-30731. PubMed ID: 29221099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design method of a wide-angle AR display with a single-layer two-dimensional pupil expansion geometrical waveguide.
    Cheng D; Wang Q; Wei L; Wang X; Zhou L; Hou Q; Duan J; Yang T; Wang Y
    Appl Opt; 2022 Jul; 61(19):5813-5822. PubMed ID: 36255817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enlarged Eye-Box Accommodation-Capable Augmented Reality with Hologram Replicas.
    Moon W; Hahn J
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holographic waveguide head-up display with 2-D pupil expansion and longitudinal image magnification.
    Draper CT; Bigler CM; Mann MS; Sarma K; Blanche PA
    Appl Opt; 2019 Feb; 58(5):A251-A257. PubMed ID: 30873984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design method of an ultra-thin two-dimensional geometrical waveguide near-eye display based on forward-ray-tracing and maximum FOV analysis.
    Ruan N; Shi F; Tian Y; Xing P; Zhang W; Qiao S
    Opt Express; 2023 Oct; 31(21):33799-33814. PubMed ID: 37859152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact dual-focal augmented reality head-up display using a single picture generation unit with polarization multiplexing.
    Liu Y; Dong J; Qiu Y; Yang BR; Qin Z
    Opt Express; 2023 Oct; 31(22):35922-35936. PubMed ID: 38017753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eyebox uniformity optimization over the full field of view for optical waveguide displays based on linked list processing.
    Yan S; Zhang E; Guo J; Jia P; Yang K; Kong L
    Opt Express; 2022 Oct; 30(21):38139-38151. PubMed ID: 36258383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced diffraction efficiency with angular selectivity by inserting an optical interlayer into a diffractive waveguide for augmented reality displays.
    Lin Y; Xu H; Shi R; Lu L; Zhang ST; Li D
    Opt Express; 2022 Aug; 30(17):31244-31255. PubMed ID: 36242211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffractive exit-pupil expander for display applications.
    Urey H
    Appl Opt; 2001 Nov; 40(32):5840-51. PubMed ID: 18364876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.