These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38439386)

  • 21. Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion.
    Ni D; Cheng D; Wang Y; Yang T; Wang X; Chi C; Wang Y
    Opt Express; 2023 Mar; 31(7):11019-11040. PubMed ID: 37155747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling and optimizing the chromatic holographic waveguide display system.
    Zhang Y; Zhu X; Liu A; Weng Y; Shen Z; Wang B
    Appl Opt; 2019 Dec; 58(34):G84-G90. PubMed ID: 31873488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid waveguide based augmented reality display system with extra large field of view and 2D exit pupil expansion.
    Wu Y; Pan C; Lu C; Zhang Y; Zhang L; Huang Z
    Opt Express; 2023 Sep; 31(20):32799-32812. PubMed ID: 37859074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Machine learning-based cognitive load prediction model for AR-HUD to improve OSH of professional drivers.
    Teng J; Wan F; Kong Y; Kim JK
    Front Public Health; 2023; 11():1195961. PubMed ID: 37601189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metagrating meets the geometry-based efficiency limit for AR waveguide in-couplers.
    Goodsell J; Xiong P; Nikolov DK; Vamivakas AN; Rolland JP
    Opt Express; 2023 Jan; 31(3):4599-4614. PubMed ID: 36785423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Switchable pupil expansion propagation using orthogonal superposition varied-line-spacing H-PDLC gratings in a holographic waveguide system.
    Shen T; Cai Z; Liu Y; Zheng J
    Appl Opt; 2019 Aug; 58(24):6622-6628. PubMed ID: 31503594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of different AR-HUD virtual warning interfaces on the takeover performance and visual characteristics of autonomous vehicles.
    Jing C; Shang C; Yu D; Chen Y; Zhi J
    Traffic Inj Prev; 2022; 23(5):277-282. PubMed ID: 35442130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a high-performance in-coupling grating using differential evolution algorithm for waveguide display.
    Pan C; Liu Z; Pang Y; Zheng X; Cai H; Zhang Y; Huang Z
    Opt Express; 2018 Oct; 26(20):26646-26662. PubMed ID: 30469747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and fabrication of an off-axis four-mirror system for head-up displays.
    Gu L; Cheng D; Liu Y; Ni J; Yang T; Wang Y
    Appl Opt; 2020 Jun; 59(16):4893-4900. PubMed ID: 32543485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Do-It-Yourself Augmented Reality Heads-Up Display (DIY AR-HUD): A Technical Note.
    Yoon JW; Spadola M; Blue R; Saylany A; Sharma N; Ahmad HS; Buch V; Madhavan K; Chen HI; Steinmetz MP; Welch WC; Malhotra NR
    Int J Spine Surg; 2021 Aug; 15(4):826-833. PubMed ID: 34266938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle.
    Xiao J; Liu J; Lv Z; Shi X; Han J
    Opt Express; 2019 Jan; 27(2):1683-1692. PubMed ID: 30696230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner.
    Shu T; Hu G; Wu R; Li H; Zhang Z; Liu X
    Opt Express; 2022 Aug; 30(18):31714-31727. PubMed ID: 36242248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms.
    Han J; Liu J; Yao X; Wang Y
    Opt Express; 2015 Feb; 23(3):3534-49. PubMed ID: 25836207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gradient polarization volume grating with wide angular bandwidth for augmented reality.
    Yan X; Wang J; Zhang W; Liu Y; Luo D
    Opt Express; 2023 Oct; 31(21):35282-35292. PubMed ID: 37859263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.
    Cheng D; Wang Y; Xu C; Song W; Jin G
    Opt Express; 2014 Aug; 22(17):20705-19. PubMed ID: 25321274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lissajous MEMS laser beam scanner with uniform and high fill-factor projection for augmented reality display.
    Xu B; Xu C; Ji Y; Zhang B; Li J
    Opt Express; 2023 Oct; 31(21):35164-35177. PubMed ID: 37859254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subwavelength dielectric grating structures with tunable higher order resonance for achromatic augmented reality display.
    Shi X; Shen H; Xue Z; Wang B
    Appl Opt; 2022 Aug; 61(24):7245-7254. PubMed ID: 36256346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Holographic multiplane augmented reality head-up display with switchable display modes based on polymer dispersed liquid crystal.
    Wang Z; Pang Y; Su Y; Feng Q; Lv G
    Appl Opt; 2024 Jan; 63(3):692-698. PubMed ID: 38294381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis.
    Glytsis EN
    J Opt Soc Am A Opt Image Sci Vis; 2002 Apr; 19(4):702-15. PubMed ID: 11934163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface.
    Wei L; Li Y; Jing J; Feng L; Zhou J
    Opt Express; 2018 Apr; 26(7):8550-8565. PubMed ID: 29715821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.