These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38439397)

  • 21. Phase Compensation of the Non-Uniformity of the Liquid Crystal on Silicon Spatial Light Modulator at Pixel Level.
    Zeng Z; Li Z; Fang F; Zhang X
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33535480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using the spatial light modulator as a binary optical element: application to spatial beam shaping for high-power lasers.
    Li S; Ding L; Du P; Lu Z; Wang Y; Zhou L; Yan X
    Appl Opt; 2018 Aug; 57(24):7060-7064. PubMed ID: 30129599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system.
    Li S; Wang Y; Lu Z; Ding L; Du P; Chen Y; Zheng Z; Ba D; Dong Y; Yuan H; Bai Z; Liu Z; Cui C
    Opt Express; 2015 Jan; 23(2):681-9. PubMed ID: 25835828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-speed programmable lithium niobate thin film spatial light modulator.
    Ye X; Ni F; Li H; Liu H; Zheng Y; Chen X
    Opt Lett; 2021 Mar; 46(5):1037-1040. PubMed ID: 33649651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parallel photopolymerisation with complex light patterns generated by diffractive optical elements.
    Kelemen L; Valkai S; Ormos P
    Opt Express; 2007 Oct; 15(22):14488-97. PubMed ID: 19550727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics.
    Turtaev S; Leite IT; Mitchell KJ; Padgett MJ; Phillips DB; Čižmár T
    Opt Express; 2017 Nov; 25(24):29874-29884. PubMed ID: 29221023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators.
    Nikolenko V; Watson BO; Araya R; Woodruff A; Peterka DS; Yuste R
    Front Neural Circuits; 2008; 2():5. PubMed ID: 19129923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-photon microscopy with diffractive optical elements and spatial light modulators.
    Watson BO; Nikolenko V; Araya R; Peterka DS; Woodruff A; Yuste R
    Front Neurosci; 2010; 4():. PubMed ID: 20859526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zero-order suppression for two-photon holographic excitation.
    Hernandez O; Guillon M; Papagiakoumou E; Emiliani V
    Opt Lett; 2014 Oct; 39(20):5953-6. PubMed ID: 25361128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient laser generation of Lamb waves.
    Huke P; Schröder M; Hellmers S; Kalms M; Bergmann RB
    Opt Lett; 2014 Oct; 39(20):5795-7. PubMed ID: 25361087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Full-frame projection displays using a liquid-crystal-on-silicon spatial light modulator for beam shaping and speckle suppression.
    Chang YS; Hsu WF; Hsu KH; Lin HY
    Appl Opt; 2014 Sep; 53(27):G214-21. PubMed ID: 25322133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advanced beam shaping for laser materials processing based on diffractive neural networks.
    Buske P; Völl A; Eisebitt M; Stollenwerk J; Holly C
    Opt Express; 2022 Jun; 30(13):22798-22816. PubMed ID: 36224970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Grey-scale silicon diffractive optics for selective laser ablation of thin conductive films.
    McDonnell C; Coyne E; O'Connor GM
    Appl Opt; 2018 Aug; 57(24):6966-6970. PubMed ID: 30129585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calibration of the pixel crosstalk in spatial light modulators for 4f pulse shaping.
    Guesmi M; Žídek K
    Appl Opt; 2021 Sep; 60(25):7648-7652. PubMed ID: 34613233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive conversion of multimode beam to near-diffraction-limited flattop beam based on dual-phase-only liquid-crystal spatial light modulators.
    Ma H; Zhao H; Zhou P; Wang X; Ma Y; Xu X; Liu Z
    Opt Express; 2010 Dec; 18(26):27723-30. PubMed ID: 21197047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities.
    Mansha S; Moitra P; Xu X; Mass TWW; Veetil RM; Liang X; Li SQ; Paniagua-Domínguez R; Kuznetsov AI
    Light Sci Appl; 2022 May; 11(1):141. PubMed ID: 35581195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Near-diffraction-limited flattop laser beam adaptively generated by stochastic parallel gradient descent algorithm.
    Ma H; Liu Z; Xu X; Wang S; Liu C
    Opt Lett; 2010 Sep; 35(17):2973-5. PubMed ID: 20808387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical retarder system with programmable spectral retardance.
    Moreno I; Carrión JV; Martínez JL; García-Martínez P; Sánchez-López MM; Campos J
    Opt Lett; 2014 Oct; 39(19):5483-6. PubMed ID: 25360908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beam steering experiment with two cascaded ferroelectric liquid-crystal spatial light modulators.
    Engström D; Hård S; Rudquist P; Dhavé K; Matuszczyk T; Skeren M; Löfving B
    Appl Opt; 2004 Mar; 43(7):1559-69. PubMed ID: 15015538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous adaptive control of dual deformable mirrors for full-field beam shaping with the improved stochastic parallel gradient descent algorithm.
    Ma H; Liu Z; Xu X; Chen J
    Opt Lett; 2013 Feb; 38(3):326-8. PubMed ID: 23381426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.