These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38439405)

  • 1. Efficient method for modeling large-scale arrays of optical nanoresonators based on the coupling theory of quasinormal mode.
    Tao Q; Su Y; Tao C; Zhong Y; Liu H
    Opt Express; 2024 Feb; 32(5):7171-7184. PubMed ID: 38439405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasinormal Mode Expansion Theory for Mesoscale Plasmonic Nanoresonators: An Analytical Treatment of Nonclassical Electromagnetic Boundary Condition.
    Tao C; Zhong Y; Liu H
    Phys Rev Lett; 2022 Nov; 129(19):197401. PubMed ID: 36399747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient method for the calculation of the optical force of multiple nanoparticles based on the coupling theory of quasinormal modes.
    Qi Z; Zhong Y; Liu H
    Opt Lett; 2021 Sep; 46(18):4610-4613. PubMed ID: 34525060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape Deformation of Nanoresonator: A Quasinormal-Mode Perturbation Theory.
    Yan W; Lalanne P; Qiu M
    Phys Rev Lett; 2020 Jul; 125(1):013901. PubMed ID: 32678619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient method for the calculation of the optical force of a single nanoparticle based on the quasinormal mode expansion.
    Qi Z; Tao C; Rong S; Zhong Y; Liu H
    Opt Lett; 2021 Jun; 46(11):2658-2661. PubMed ID: 34061081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasinormal mode solvers for resonators with dispersive materials.
    Lalanne P; Yan W; Gras A; Sauvan C; Hugonin JP; Besbes M; Demésy G; Truong MD; Gralak B; Zolla F; Nicolet A; Binkowski F; Zschiedrich L; Burger S; Zimmerling J; Remis R; Urbach P; Liu HT; Weiss T
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):686-704. PubMed ID: 31044992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient hybrid method for the modal analysis of optical microcavities and nanoresonators.
    Wu T; Arrivault D; Duruflé M; Gras A; Binkowski F; Burger S; Yan W; Lalanne P
    J Opt Soc Am A Opt Image Sci Vis; 2021 Aug; 38(8):1224-1231. PubMed ID: 34613317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersive perfectly matched layers and high-order absorbing boundary conditions for electromagnetic quasinormal modes.
    Demésy G; Wu T; Brûlé Y; Zolla F; Nicolet A; Lalanne P; Gralak B
    J Opt Soc Am A Opt Image Sci Vis; 2023 Oct; 40(10):1947-1958. PubMed ID: 37855551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normalization, orthogonality, and completeness of quasinormal modes of open systems: the case of electromagnetism [Invited].
    Sauvan C; Wu T; Zarouf R; Muljarov EA; Lalanne P
    Opt Express; 2022 Feb; 30(5):6846-6885. PubMed ID: 35299463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gravitational Wave Signatures of Black Hole Quasinormal Mode Instability.
    Jaramillo JL; Macedo RP; Sheikh LA
    Phys Rev Lett; 2022 May; 128(21):211102. PubMed ID: 35687433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators.
    Sauvan C; Hugonin JP; Maksymov IS; Lalanne P
    Phys Rev Lett; 2013 Jun; 110(23):237401. PubMed ID: 25167528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast computation of far-field pulse-echo PSF of arbitrary arrays for large sparse 2-D ultrasound array design.
    Li Z; Chi C
    Ultrasonics; 2018 Mar; 84():63-73. PubMed ID: 29078097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast ultrasound beam prediction for linear and regular two-dimensional arrays.
    Hlawitschka M; McGough RJ; Ferrara KW; Kruse DE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):2001-12. PubMed ID: 21937338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. More Than 30 000-fold Field Enhancement of Terahertz Nanoresonators Enabled by Rapid Inverse Design.
    Lee HT; Kim J; Lee JS; Yoon M; Park HR
    Nano Lett; 2023 Dec; 23(24):11685-11692. PubMed ID: 38060838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale nanophotonic phased array.
    Sun J; Timurdogan E; Yaacobi A; Hosseini ES; Watts MR
    Nature; 2013 Jan; 493(7431):195-9. PubMed ID: 23302859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasinormal Modes of Optical Solitons.
    Burgess C; Patrick S; Torres T; Gregory R; König F
    Phys Rev Lett; 2024 Feb; 132(5):053802. PubMed ID: 38364120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of a two-level atom with single-mode optical field beyond the rotating wave approximation.
    Liu J; Li ZY
    Opt Express; 2014 Nov; 22(23):28671-82. PubMed ID: 25402108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Generalized Analytical Expression for the Resonance Frequencies of Plasmonic Nanoresonators Composed of Folded Rectangular Geometries.
    Lu H; Li L; Zhang J; Xia S; Kang X; Huang M; Shen K; Dong C; Zhang X
    Sci Rep; 2019 Jan; 9(1):52. PubMed ID: 30631122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear mode stability of the Kerr-Newman black hole and its quasinormal modes.
    Dias ÓJ; Godazgar M; Santos JE
    Phys Rev Lett; 2015 Apr; 114(15):151101. PubMed ID: 25933301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.