These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38439424)

  • 21. Strain-tunable optical microlens arrays with deformable wrinkles for spatially coordinated image projection on a security substrate.
    Choi IS; Park S; Jeon S; Kwon YW; Park R; Taylor RA; Kyhm K; Hong SW
    Microsyst Nanoeng; 2022; 8():98. PubMed ID: 36119375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and Fabrication of a Tunable Optofluidic Microlens Driven by an Encircled Thermo-Pneumatic Actuator.
    Zhang W; Li H; Zou Y; Zhao P; Li Z
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization.
    Žukauskas A; Malinauskas M; Reinhardt C; Chichkov BN; Gadonas R
    Appl Opt; 2012 Jul; 51(21):4995-5003. PubMed ID: 22858937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry.
    Holzner G; Du Y; Cao X; Choo J; J deMello A; Stavrakis S
    Lab Chip; 2018 Dec; 18(23):3631-3637. PubMed ID: 30357206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation, fabrication, and characterization of a tunable electrowetting-based lens with a wedge-shaped PDMS dielectric layer.
    Moghaddam MS; Latifi H; Shahraki H; Cheri MS
    Appl Opt; 2015 Apr; 54(10):3010-7. PubMed ID: 25967216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid optical μ-printing of polymer top-lensed microlens array.
    Ouyang X; Yin Z; Wu J; Zhou C; Zhang AP
    Opt Express; 2019 Jun; 27(13):18376-18382. PubMed ID: 31252782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmofluidic Microlenses for Label-Free Optical Sorting of Exosomes.
    Zhu X; Cicek A; Li Y; Yanik AA
    Sci Rep; 2019 Jun; 9(1):8593. PubMed ID: 31197196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Femtosecond laser direct writing of a 3D microcantilever on the tip of an optical fiber sensor for on-chip optofluidic sensing.
    Li C; Liu Y; Lang C; Zhang Y; Qu S
    Lab Chip; 2022 Sep; 22(19):3734-3743. PubMed ID: 36039614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems.
    Kasztelanic R; Filipkowski A; Anuszkiewicz A; Stafiej P; Stepniewski G; Pysz D; Krzyzak K; Stepien R; Klimczak M; Buczynski R
    Sci Rep; 2018 Mar; 8(1):5072. PubMed ID: 29568035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Femtosecond laser processing for optofluidic fabrication.
    Sugioka K; Cheng Y
    Lab Chip; 2012 Oct; 12(19):3576-89. PubMed ID: 22820547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices.
    Meena Narayana Menon D; Pugliese D; Giardino M; Janner D
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy.
    Miccio L; Finizio A; Grilli S; Vespini V; Paturzo M; De Nicola S; Ferraro P
    Opt Express; 2009 Feb; 17(4):2487-99. PubMed ID: 19219152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Femtosecond laser multibeam parallel processing for variable focal-length optofluidic chips.
    Lei P; Zhang J; Shangguan S; Wang Z; Cao W; Qi D; Zheng H
    Opt Lett; 2023 Nov; 48(21):5603-5606. PubMed ID: 37910713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method.
    Kuo SM; Lin CH
    Opt Express; 2010 Aug; 18(18):19114-9. PubMed ID: 20940806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optofluidic tunable lenses using laser-induced thermal gradient.
    Chen Q; Jian A; Li Z; Zhang X
    Lab Chip; 2016 Jan; 16(1):104-11. PubMed ID: 26584422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible.
    Richards CA; Ocier CR; Xie D; Gao H; Robertson T; Goddard LL; Christiansen RE; Cahill DG; Braun PV
    Nat Commun; 2023 May; 14(1):3119. PubMed ID: 37253761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive liquid microlenses activated by stimuli-responsive hydrogels.
    Dong L; Agarwal AK; Beebe DJ; Jiang H
    Nature; 2006 Aug; 442(7102):551-4. PubMed ID: 16885981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ fabrication of a tunable microlens.
    Zhang L; Wang Z; Wang Y; Qiu R; Fang W; Tong L
    Opt Lett; 2015 Aug; 40(16):3850-3. PubMed ID: 26274676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable liquid crystal microlenses with crater polymer prepared by droplet evaporation.
    Hwang SJ; Liu YX; Porter GA
    Opt Express; 2013 Dec; 21(25):30731-8. PubMed ID: 24514649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.