These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38439482)

  • 1. Simultaneous sensing profiles of beam attenuation coefficient and volume scattering function at 180° using a single-photon underwater elastic-Raman lidar.
    Shangguan M; Liao Z; Guo Y
    Opt Express; 2024 Feb; 32(5):8189-8204. PubMed ID: 38439482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensing the profile of particulate beam attenuation coefficient through a single-photon oceanic Raman lidar.
    Shangguan M; Liao Z; Guo Y; Lee Z
    Opt Express; 2023 Jul; 31(16):25398-25414. PubMed ID: 37710428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing profiles of the volume scattering function at 180° using a single-photon oceanic fluorescence lidar.
    Shangguan M; Guo Y; Liao Z; Lee Z
    Opt Express; 2023 Nov; 31(24):40393-40410. PubMed ID: 38041342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-day profiling of a beam attenuation coefficient using a single-photon underwater lidar with a large dynamic measurement range.
    Shangguan M; Yang Z; Lin Z; Weng Z; Sun J
    Opt Lett; 2024 Feb; 49(3):626-629. PubMed ID: 38300075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote sensing oil in water with an all-fiber underwater single-photon Raman lidar.
    Shangguan M; Yang Z; Shangguan M; Lin Z; Liao Z; Guo Y; Liu C
    Appl Opt; 2023 Jul; 62(19):5301-5305. PubMed ID: 37707235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Day and night continuous high-resolution shallow-water depth detection with single-photon underwater lidar.
    Shangguan M; Weng Z; Lin Z; Lee Z; Shangguan M; Yang Z; Sun J; Wu T; Zhang Y; Wen C
    Opt Express; 2023 Dec; 31(26):43950-43962. PubMed ID: 38178478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative retrieval method for ocean attenuation profiles measured by airborne lidar.
    Liu H; Chen P; Mao Z; Pan D
    Appl Opt; 2020 Apr; 59(10):C42-C51. PubMed ID: 32400564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Airborne polarized lidar detection of scattering layers in the ocean.
    Vasilkov AP; Goldin YA; Gureev BA; Hoge FE; Swift RN; Wright CW
    Appl Opt; 2001 Aug; 40(24):4353-64. PubMed ID: 18360476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretation of airborne oceanic lidar: effects of multiple scattering.
    Gordon HR
    Appl Opt; 1982 Aug; 21(16):2996-3001. PubMed ID: 20396163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shipborne variable-FOV, dual-wavelength, polarized ocean lidar: design and measurements in the Western Pacific.
    Liu Q; Wu S; Liu B; Liu J; Zhang K; Dai G; Tang J; Chen G
    Opt Express; 2022 Mar; 30(6):8927-8948. PubMed ID: 35299334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of the polarized Monte Carlo model of shipborne oceanic lidar returns.
    He H; Liu Q; Tang J; Zhu P; Chen S; Song X; Wu S
    Opt Express; 2023 Dec; 31(26):43250-43268. PubMed ID: 38178423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the air-water interface on hydrosol lidar operation.
    Kokhanenko GP; Krekova MM; Penner LE; Shamanaev VS
    Appl Opt; 2005 Jun; 44(17):3510-9. PubMed ID: 16007849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrieving seawater-backscattering profiles from coupling Raman and elastic lidar data.
    Malinka AV; Zege EP
    Appl Opt; 2004 Jul; 43(19):3925-30. PubMed ID: 15250559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lidar measurement of atmospheric aerosol extinction profiles: a comparison between two techniques-Klett inversion and pure rotational Raman scattering methods.
    Mitev VM; Grigorov IV; Simeonov VB
    Appl Opt; 1992 Oct; 31(30):6469-74. PubMed ID: 20733864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved algorithm for retrieving aerosol optical properties based on multi-wavelength Raman lidar.
    Mao S; Yin Z; Wang L; Yi Y; Wang A; Bu Z; Chen Y; Zhao Y; Müller D; Wang X
    Opt Express; 2023 Sep; 31(19):30040-30065. PubMed ID: 37710556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of particle extinction coefficients at 1064 nm with lidar: temperature dependence of rotational Raman channels.
    Wang A; Yin Z; Mao S; Wang L; Yi Y; Chen Q; MÜller D; Wang X
    Opt Express; 2024 Jan; 32(3):4650-4667. PubMed ID: 38297661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of satellite-retrieved oceanic inherent optical properties: proposed two-color elastic backscatter lidar and retrieval theory.
    Hoge FE
    Appl Opt; 2003 Dec; 42(36):7197-201. PubMed ID: 14717299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral scanning Raman scattering lidar for accurate measurement of atmospheric temperature and water vapor from ground to height of interest.
    Yang F; Gao F; Zhang C; Li X; Gao X; Hua D; Wang L; Xin W; Stanič S
    Opt Lett; 2023 May; 48(10):2595-2598. PubMed ID: 37186717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties.
    Zhou Y; Chen Y; Zhao H; Jamet C; Dionisi D; Chami M; Di Girolamo P; Churnside JH; Malinka A; Zhao H; Qiu D; Cui T; Liu Q; Chen Y; Phongphattarawat S; Wang N; Chen S; Chen P; Yao Z; Le C; Tao Y; Xu P; Wang X; Wang B; Chen F; Ye C; Zhang K; Liu C; Liu D
    Light Sci Appl; 2022 Sep; 11(1):261. PubMed ID: 36055999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weibull approximation of LiDAR waveforms for estimating the beam attenuation coefficient.
    Montes-Hugo MA; Vuorenkoski AK; Dalgleish FR; Ouyang B
    Opt Express; 2016 Oct; 24(20):22670-22681. PubMed ID: 27828337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.