These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 38439699)

  • 21. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci.
    Najah S; Saulnier C; Pernodet JL; Bury-Moné S
    BMC Biotechnol; 2019 Mar; 19(1):18. PubMed ID: 30894153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms.
    Javed MR; Sadaf M; Ahmed T; Jamil A; Nawaz M; Abbas H; Ijaz A
    Curr Microbiol; 2018 Dec; 75(12):1675-1683. PubMed ID: 30078067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a CRISPR/Cas9
    Ma JX; He WY; Hua HM; Zhu Q; Zheng GS; Zimin AA; Wang WF; Lu YH
    ACS Synth Biol; 2023 Oct; 12(10):3114-3123. PubMed ID: 37722085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters.
    Lee N; Kim W; Hwang S; Lee Y; Cho S; Palsson B; Cho BK
    Sci Data; 2020 Feb; 7(1):55. PubMed ID: 32054853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters.
    Ikeda H; Kazuo SY; Omura S
    J Ind Microbiol Biotechnol; 2014 Feb; 41(2):233-50. PubMed ID: 23990133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRAGE-CRISPR facilitates rapid activation of secondary metabolite biosynthetic gene clusters in bacteria.
    Ke J; Robinson D; Wu ZY; Kuftin A; Louie K; Kosina S; Northen T; Cheng JF; Yoshikuni Y
    Cell Chem Biol; 2022 Apr; 29(4):696-710.e4. PubMed ID: 34508657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas genome editing to optimize pharmacologically active plant natural products.
    Dey A
    Pharmacol Res; 2021 Feb; 164():105359. PubMed ID: 33285226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-scale determination of 5´ and 3´ boundaries of RNA transcripts in Streptomyces genomes.
    Lee Y; Lee N; Hwang S; Kim W; Jeong Y; Cho S; Palsson BO; Cho BK
    Sci Data; 2020 Dec; 7(1):436. PubMed ID: 33319794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-based metabolic editing: Next-generation metabolic engineering in plants.
    Sabzehzari M; Zeinali M; Naghavi MR
    Gene; 2020 Oct; 759():144993. PubMed ID: 32717311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
    Cho S; Shin J; Cho BK
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29621180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Advances in CRISPR-Cas-mediated genome editing system in plants].
    Wang C; Wang K
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1712-1722. PubMed ID: 29082719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-guided investigation of secondary metabolites produced by a potential new strain Streptomyces BA2 isolated from an endemic plant rhizosphere in Turkey.
    Kum E; İnce E
    Arch Microbiol; 2021 Jul; 203(5):2431-2438. PubMed ID: 33666690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic Inducible Regulatory Systems Optimized for the Modulation of Secondary Metabolite Production in Streptomyces.
    Ji CH; Kim H; Kang HS
    ACS Synth Biol; 2019 Mar; 8(3):577-586. PubMed ID: 30807691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systems Analysis of Highly Multiplexed CRISPR-Base Editing in Streptomycetes.
    Whitford CM; Gren T; Palazzotto E; Lee SY; Tong Y; Weber T
    ACS Synth Biol; 2023 Aug; 12(8):2353-2366. PubMed ID: 37402223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fine-tuning the regulation of Cas9 expression levels for efficient CRISPR-Cas9 mediated recombination in Streptomyces.
    Ye S; Enghiad B; Zhao H; Takano E
    J Ind Microbiol Biotechnol; 2020 May; 47(4-5):413-423. PubMed ID: 32367443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emergent CRISPR-Cas-based technologies for engineering non-model bacteria.
    Volke DC; Orsi E; Nikel PI
    Curr Opin Microbiol; 2023 Oct; 75():102353. PubMed ID: 37413959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Vitro CRISPR/Cas9 System for Efficient Targeted DNA Editing.
    Liu Y; Tao W; Wen S; Li Z; Yang A; Deng Z; Sun Y
    mBio; 2015 Nov; 6(6):e01714-15. PubMed ID: 26556277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9-Based Methods for Inactivating Actinobacterial Biosynthetic Genes and Elucidating Function.
    Chhun A; Alberti F
    Methods Mol Biol; 2022; 2489():201-222. PubMed ID: 35524052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.