BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38439710)

  • 1. Polymer Dots with Delayed Fluorescence and Tunable Cellular Uptake for Photodynamic Therapy and Time-Gated Imaging.
    Luppi BT; Primrose WL; Hudson ZM
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202400712. PubMed ID: 38439710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red-Emissive Cell-Penetrating Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Cellular Imaging.
    Christopherson CJ; Paisley NR; Xiao Z; Algar WR; Hudson ZM
    J Am Chem Soc; 2021 Aug; 143(33):13342-13349. PubMed ID: 34382775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-Cross-Linkable Polymer Dots with Stable Sensitizer Loading and Amplified Singlet Oxygen Generation for Photodynamic Therapy.
    Tang Y; Chen H; Chang K; Liu Z; Wang Y; Qu S; Xu H; Wu C
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3419-3431. PubMed ID: 28067486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions.
    Chepurna OM; Yakovliev A; Ziniuk R; Nikolaeva OA; Levchenko SM; Xu H; Losytskyy MY; Bricks JL; Slominskii YL; Vretik LO; Qu J; Ohulchanskyy TY
    J Nanobiotechnology; 2020 Jan; 18(1):19. PubMed ID: 31973717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsically Cancer-Mitochondria-Targeted Thermally Activated Delayed Fluorescence Nanoparticles for Two-Photon-Activated Fluorescence Imaging and Photodynamic Therapy.
    Zhang J; Fang F; Liu B; Tan JH; Chen WC; Zhu Z; Yuan Y; Wan Y; Cui X; Li S; Tong QX; Zhao J; Meng XM; Lee CS
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41051-41061. PubMed ID: 31602976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metal-Free Photosensitizer for Two-Photon-Activated Photodynamic Therapy at the Cell and Small Animal Levels.
    Fang F; Yuan Y; Wan Y; Li J; Song Y; Chen WC; Zhao D; Chi Y; Li M; Lee CS; Zhang J
    Small; 2022 Feb; 18(6):e2106215. PubMed ID: 35018711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small molecule-initiated light-activated semiconducting polymer dots: an integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells.
    Zhang Y; Pang L; Ma C; Tu Q; Zhang R; Saeed E; Mahmoud AE; Wang J
    Anal Chem; 2014 Mar; 86(6):3092-9. PubMed ID: 24552272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive review on singlet oxygen generation in nanomaterials and conjugated polymers for photodynamic therapy in the treatment of cancer.
    Singh N; Sen Gupta R; Bose S
    Nanoscale; 2024 Feb; 16(7):3243-3268. PubMed ID: 38265094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ratiometric Fluorescent Detection of Intracellular Singlet Oxygen by Semiconducting Polymer Dots.
    Hou W; Yuan Y; Sun Z; Guo S; Dong H; Wu C
    Anal Chem; 2018 Dec; 90(24):14629-14634. PubMed ID: 30463405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Activatable Singlet Oxygen-Generating Boron-dipyrromethenes (BODIPYs) for Photodynamic Therapy and Bioimaging.
    Radunz S; Wedepohl S; Röhr M; Calderón M; Tschiche HR; Resch-Genger U
    J Med Chem; 2020 Feb; 63(4):1699-1708. PubMed ID: 31967820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembled Platinum Supramolecular Metallacycles Based on a Novel TADF Photosensitizer for Efficient Cancer Photochemotherapy.
    Lv S; Miao Y; Zheng D; Li X; Liu D; Song F
    Mol Pharm; 2021 Mar; 18(3):1229-1237. PubMed ID: 33427472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorin e6-1,3-diphenylisobenzofuran polymer hybrid nanoparticles for singlet oxygen-detection photodynamic abaltion.
    Wang XH; Wei XF; Liu JH; Yang W; Liu YA; Cheng K; He XY; Fu XL; Zhang Y; Zhang HX
    Methods Appl Fluoresc; 2021 Feb; 9(2):025003. PubMed ID: 33524966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring Cellular Uptake of Polymer Dots for Quantitative Imaging and Photodynamic Therapy.
    Yuan Y; Hou W; Sun Z; Liu J; Ma N; Li X; Yin S; Qin W; Wu C
    Anal Chem; 2021 May; 93(18):7071-7078. PubMed ID: 33905656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Emission Carbonized Polymer Dots for Ratiometric pH Sensing, pH-Dependent Generation of Singlet Oxygen, and Imaging-Guided Dynamics Monitoring of Photodynamic Therapy.
    Hu X; Zhang Q; Dai X; Sun J; Gao F
    ACS Appl Bio Mater; 2021 Oct; 4(10):7663-7672. PubMed ID: 35006696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Infrared-Emitting Boron-Difluoride-Curcuminoid-Based Polymers Exhibiting Thermally Activated Delayed Fluorescence as Biological Imaging Probes.
    Paisley NR; Halldorson SV; Tran MV; Gupta R; Kamal S; Algar WR; Hudson ZM
    Angew Chem Int Ed Engl; 2021 Aug; 60(34):18630-18638. PubMed ID: 34133838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysosome directed red light photodynamic therapy using glycosylated iron-(III) conjugates of boron-dipyrromethene.
    Sahoo S; Pathak S; Kumar A; Nandi D; Chakravarty AR
    J Inorg Biochem; 2023 Jul; 244():112226. PubMed ID: 37105008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel D-A-D Photosensitizer for Efficient NIR Imaging and Photodynamic Therapy.
    Liu Y; Chen M; Zhao Y; Lv S; Zheng D; Liu D; Song F
    Chembiochem; 2021 Jun; 22(12):2161-2167. PubMed ID: 33871143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitroreductase-Activatable Theranostic Molecules with High PDT Efficiency under Mild Hypoxia Based on a TADF Fluorescein Derivative.
    Liu Z; Song F; Shi W; Gurzadyan G; Yin H; Song B; Liang R; Peng X
    ACS Appl Mater Interfaces; 2019 May; 11(17):15426-15435. PubMed ID: 30945838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy.
    Xue M; Zhao J; Zhan Z; Zhao S; Lan C; Ye F; Liang H
    Nanoscale; 2018 Oct; 10(38):18124-18130. PubMed ID: 30255925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.
    Pramual S; Lirdprapamongkol K; Svasti J; Bergkvist M; Jouan-Hureaux V; Arnoux P; Frochot C; Barberi-Heyob M; Niamsiri N
    J Photochem Photobiol B; 2017 Aug; 173():12-22. PubMed ID: 28554072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.