These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38439859)

  • 1. Nano multi-layered HfO
    Alhabradi M; Yang X; Alruwaili M; Tahir AA
    Heliyon; 2024 Mar; 10(5):e27078. PubMed ID: 38439859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting.
    Wang M; Pyeon M; Gönüllü Y; Kaouk A; Shen S; Guo L; Mathur S
    Nanoscale; 2015 Jun; 7(22):10094-100. PubMed ID: 25980730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertically Aligned CdO-Decked α-Fe
    Alhabradi M; Nundy S; Ghosh A; Tahir AA
    ACS Omega; 2022 Aug; 7(32):28396-28407. PubMed ID: 35990474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting.
    Mao L; Huang YC; Fu Y; Dong CL; Shen S
    Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Flower-Shaped Sb
    Li Z; Jiang N; Wang K; Huang D; Ye Z; Jiang J; Zhu L
    Langmuir; 2024 Jun; 40(23):12097-12106. PubMed ID: 38814133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hematite-based photoelectrochemical water splitting supported by inverse opal structures of graphene.
    Yoon KY; Lee JS; Kim K; Bak CH; Kim SI; Kim JB; Jang JH
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22634-9. PubMed ID: 25469502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A facile approach for preparing densely-packed individual p-NiO/n-Fe
    Singh AK; Sarkar D
    Nanoscale; 2018 Jul; 10(27):13130-13139. PubMed ID: 29963674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe
    Ma J; Wang Q; Li L; Zong X; Sun H; Tao R; Fan X
    J Colloid Interface Sci; 2021 Nov; 602():32-42. PubMed ID: 34118603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe
    Masoumi Z; Tayebi M; Kolaei M; Tayyebi A; Ryu H; Jang JI; Lee BK
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39215-39229. PubMed ID: 34374510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Photoelectrochemical Water Splitting by Tailoring MoS
    Sitara E; Nasir H; Mumtaz A; Ehsan MF; Sohail M; Iram S; Bukhari SAB
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational construction of S-doped FeOOH onto Fe
    Duc Quang N; Cao Van P; Majumder S; Jeong JR; Kim D; Kim C
    J Colloid Interface Sci; 2022 Jun; 616():749-758. PubMed ID: 35247813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CdS Nanoparticle-Modified α-Fe
    Yin R; Liu M; Tang R; Yin L
    Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pt-functionalized Fe2O3 photoanodes for solar water splitting: the role of hematite nano-organization and the platinum redox state.
    Warwick ME; Barreca D; Bontempi E; Carraro G; Gasparotto A; Maccato C; Kaunisto K; Ruoko TP; Lemmetyinen H; Sada C; Gönüllü Y; Mathur S
    Phys Chem Chem Phys; 2015 May; 17(19):12899-907. PubMed ID: 25909639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode.
    Yang J; Bao C; Yu T; Hu Y; Luo W; Zhu W; Fu G; Li Z; Gao H; Li F; Zou Z
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26482-90. PubMed ID: 26565922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Band Offsets in Ultrathin Hematite for Enhancing the Photoelectrochemical Water Splitting Performance of Heterostructured Photoanodes.
    Choi MJ; Kim TL; Choi KS; Sohn W; Lee TH; Lee SA; Park H; Jeong SY; Yang JW; Lee S; Jang HW
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7788-7795. PubMed ID: 35040620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ growth of α-Fe
    Li C; Chen Z; Yuan W; Xu QH; Li CM
    Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting.
    Nyarige JS; Paradzah AT; Krüger TPJ; Diale M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enabling high low-bias performance of Fe
    Xiao J; Li C; Jia X; Du B; Li R; Wang B
    J Colloid Interface Sci; 2023 Mar; 633():555-565. PubMed ID: 36470136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting.
    Kawde A; Annamalai A; Sellstedt A; Glatzel P; Wågberg T; Messinger J
    Dalton Trans; 2019 Jan; 48(4):1166-1170. PubMed ID: 30534760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.