These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38440218)

  • 1. Thermoelectrocatalysis: an emerging strategy for converting waste heat into chemical energy.
    Zhang Y; Li S; Zhang J; Zhao LD; Lin Y; Liu W; Rosei F
    Natl Sci Rev; 2024 Apr; 11(4):nwae036. PubMed ID: 38440218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar reforming as an emerging technology for circular chemical industries.
    Bhattacharjee S; Linley S; Reisner E
    Nat Rev Chem; 2024 Feb; 8(2):87-105. PubMed ID: 38291132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently.
    Zhang Q; Sun Y; Xu W; Zhu D
    Adv Mater; 2014 Oct; 26(40):6829-51. PubMed ID: 24687930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-Resistant Thermoelectric Ionogel Enables Underwater Heat Harvesting.
    Li L; Li H; Wei J; Li R; Sun J; Zhao C; Chen T
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications.
    Sonu ; Rani GM; Pathania D; Abhimanyu ; Umapathi R; Rustagi S; Huh YS; Gupta VK; Kaushik A; Chaudhary V
    Sci Total Environ; 2023 Jun; 875():162667. PubMed ID: 36894105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound-Induced Wireless Energy Harvesting: From Materials Strategies to Functional Applications.
    Jiang L; Yang Y; Chen Y; Zhou Q
    Nano Energy; 2020 Nov; 77():. PubMed ID: 32905454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photovoltaic Materials and Their Path toward Cleaner Energy.
    Mitrašinović AM; Radosavljević M
    Glob Chall; 2023 Feb; 7(2):2200146. PubMed ID: 36778780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: A review.
    Rasheed T; Anwar MT; Ahmad N; Sher F; Khan SU; Ahmad A; Khan R; Wazeer I
    J Environ Manage; 2021 Jun; 287():112257. PubMed ID: 33690013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy harvesting: an integrated view of materials, devices and applications.
    Radousky HB; Liang H
    Nanotechnology; 2012 Dec; 23(50):502001. PubMed ID: 23186865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triboelectric Characterization of Colloidal TiO
    Garofalo E; Cecchini L; Bevione M; Chiolerio A
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32560501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft Organic Thermoelectric Materials: Principles, Current State of the Art and Applications.
    Zhang Y; Wang W; Zhang F; Dai K; Li C; Fan Y; Chen G; Zheng Q
    Small; 2022 Mar; 18(12):e2104922. PubMed ID: 34921579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead-free relaxor-ferroelectric thin films for energy harvesting from low-grade waste-heat.
    Sharma AP; Behera MK; Pradhan DK; Pradhan SK; Bonner CE; Bahoura M
    Sci Rep; 2021 Jan; 11(1):111. PubMed ID: 33420242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives.
    Lu H; Shi W; Guo Y; Guan W; Lei C; Yu G
    Adv Mater; 2022 Mar; 34(12):e2110079. PubMed ID: 35122451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Cost, Environmentally Friendly, and High-Performance Triboelectric Nanogenerator Based on a Common Waste Material.
    Li Y; Zhao Z; Gao Y; Li S; Zhou L; Wang J; Wang ZL
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30776-30784. PubMed ID: 34165276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of electro-chemical processes using energy harvesting materials and devices.
    Zhang Y; Xie M; Adamaki V; Khanbareh H; Bowen CR
    Chem Soc Rev; 2017 Dec; 46(24):7757-7786. PubMed ID: 29125613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Waste management strategy and the role of the environmental protection and energy efficiency fund].
    Kalambura S
    Arh Hig Rada Toksikol; 2006 Sep; 57(3):267-74. PubMed ID: 17120999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive review of critical analysis of biodegradable waste PCM for thermal energy storage systems using machine learning and deep learning to predict dynamic behavior.
    Sharma A; Singh PK; Makki E; Giri J; Sathish T
    Heliyon; 2024 Feb; 10(3):e25800. PubMed ID: 38356509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative building materials by upcycling clothing waste into thermal energy storage matrix with phase change materials.
    Jin D; Yong Choi J; Nam J; Yuk H; Kim S
    Waste Manag; 2024 Mar; 175():328-338. PubMed ID: 38237408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review on upgrading organic waste to value-added carbon materials for energy and environmental applications.
    Yuan X; Dissanayake PD; Gao B; Liu WJ; Lee KB; Ok YS
    J Environ Manage; 2021 Oct; 296():113128. PubMed ID: 34246899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ecodevelopment strategy and the reduction of threat to the health].
    Marchwińiska E
    Wiad Lek; 2002; 55 Suppl 1(Pt 2):784-90. PubMed ID: 17474600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.