These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38440218)

  • 21. Intercalation electrochemistry for thermoelectric energy harvesting from temperature fluctuations.
    Heubner C; Liebmann T; Schneider M; Michaelis A
    Chem Commun (Camb); 2022 Jan; 58(8):1203-1206. PubMed ID: 34981803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Editorial: focus on waste-heat harvesting via thermoelectric conversion: materials, devices and systems for sustainable energy technologies.
    Artini C; Isotta E; Demontis V; Pennelli G; Castellero A; Ferrario A; Rossella F
    Nanotechnology; 2023 Dec; 35(10):. PubMed ID: 38081069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructured Photothermal Materials for Environmental and Catalytic Applications.
    Chen H; Shi R; Zhang T
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).
    Riber C; Bhander GS; Christensen TH
    Waste Manag Res; 2008 Feb; 26(1):96-103. PubMed ID: 18338706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical catalytic upgrading of polyethylene terephthalate plastic waste into value-added materials, fuels and chemicals.
    Jiang M; Wang X; Xi W; Yang P; Zhou H; Duan J; Ratova M; Wu D
    Sci Total Environ; 2024 Feb; 912():169342. PubMed ID: 38123093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tackling municipal solid waste crisis in India: Insights into cutting-edge technologies and risk assessment.
    Singh M; Singh M; Singh SK
    Sci Total Environ; 2024 Mar; 917():170453. PubMed ID: 38296084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices.
    Teixeira JS; Costa RS; Pires AL; Pereira AM; Pereira C
    Dalton Trans; 2021 Jul; 50(29):9983-10013. PubMed ID: 34264261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Charging-free electrochemical system for harvesting low-grade thermal energy.
    Yang Y; Lee SW; Ghasemi H; Loomis J; Li X; Kraemer D; Zheng G; Cui Y; Chen G
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17011-6. PubMed ID: 25404325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Converting inert plastic waste into energetic materials: A study on the light-accelerated decomposition of plastic waste with the Fenton reaction.
    Chow CF; Wong WL; Chan CW; Chan CS
    Waste Manag; 2018 May; 75():174-180. PubMed ID: 29395734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "Waste to Wealth": Lignin as a Renewable Building Block for Energy Harvesting/Storage and Environmental Remediation.
    Wang D; Lee SH; Kim J; Park CB
    ChemSusChem; 2020 Jun; 13(11):2807-2827. PubMed ID: 32180357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Converting Waste Plastic to Liquid Organic Hydrogen Carriers.
    Soltani M; Rorrer JE
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202314530. PubMed ID: 37983726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrothermal Liquefaction: How the Holistic Approach by Nature Will Help Solve the Environmental Conundrum.
    Ranjbar S; Malcata FX
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy.
    Sharma S; Basu S; Shetti NP; Aminabhavi TM
    Sci Total Environ; 2020 Apr; 713():136633. PubMed ID: 32019020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of Cu
    Ang AKR; Yamazaki I; Hirata K; Singh S; Matsunami M; Takeuchi T
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46962-46970. PubMed ID: 37768216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Innovative technologies for contaminated site remediation: focus on bioremediation.
    Gabriel PF
    J Air Waste Manage Assoc; 1991 Dec; 41(12):1657-60. PubMed ID: 1799447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrovoltaic technology: from mechanism to applications.
    Wang X; Lin F; Wang X; Fang S; Tan J; Chu W; Rong R; Yin J; Zhang Z; Liu Y; Guo W
    Chem Soc Rev; 2022 Jun; 51(12):4902-4927. PubMed ID: 35638386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrospun Nanofibers for Biomedical, Sensing, and Energy Harvesting Functions.
    Demir D; Bolgen N; Vaseashta A
    Polymers (Basel); 2023 Oct; 15(21):. PubMed ID: 37959933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial Technologies in Waste Management, Energy Generation and Climate Change: Implications on Earth and Space.
    Chander AM; Singh NK; Venkateswaran K
    J Indian Inst Sci; 2023 May; ():1-6. PubMed ID: 37362853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.