These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38440283)

  • 1. Tuning thermal and graphitization behaviors of lignin
    Yan Q; Zhang H; Ketelboeter T; Peng Y; Wan C; Cai Z
    RSC Adv; 2024 Feb; 14(11):7592-7600. PubMed ID: 38440283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Study of the Key Factors on Production of Graphene Materials from Fe-Lignin Nanocomposites through a Molecular Cracking and Welding (MCW) Method.
    Yan Q; Ketelboeter T; Cai Z
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Solvents on Fe-Lignin Precursors for Production Graphene-Based Nanostructures.
    Yan Q; Cai Z
    Molecules; 2020 May; 25(9):. PubMed ID: 32384618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal Catalysts for Layer-Exchange Growth of Multilayer Graphene.
    Nakajima Y; Murata H; Saitoh N; Yoshizawa N; Suemasu T; Toko K
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41664-41669. PubMed ID: 30403335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective production of phenolic monomers via high efficient lignin depolymerization with a carbon based nickel-iron-molybdenum carbide catalyst under mild conditions.
    Yan B; Lin X; Chen Z; Cai Q; Zhang S
    Bioresour Technol; 2021 Feb; 321():124503. PubMed ID: 33310408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of COx-Free Hydrogen and Few-Layer Graphene Nanoplatelets by Catalytic Decomposition of Methane over Ni-Lignin-Derived Nanoparticles.
    Yan Q; Ketelboeter T; Cai Z
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of a catecholate chelator as a redox agent in Fenton-based reactions on degradation of lignin-model substrates and on COD removal from effluent of an ECF kraft pulp mill.
    Arantes V; Milagres AM
    J Hazard Mater; 2007 Mar; 141(1):273-9. PubMed ID: 16905243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of Coal-Derived Metal-Supported Few-Layer Graphene Composite Materials Synthesized Using a Microwave-Assisted Catalytic Graphitization Process.
    Islam F; Tahmasebi A; Wang R; Yu J
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34202042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-Assisted Formation of Molybdenum Heterometallic Clusters: Evidence for the Formation of S
    Maiti BK; Maia LB; Pauleta SR; Moura I; Moura JJ
    Inorg Chem; 2017 Feb; 56(4):2210-2220. PubMed ID: 28128558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteroatom-doped and graphitization-enhanced lignin-derived hierarchically porous carbon via facile assembly of lignin-Fe coordination for high-voltage symmetric supercapacitors.
    Li W; Li C; Xu Y; Wang G; Xu T; Zhang W; Si C
    J Colloid Interface Sci; 2024 Apr; 659():374-384. PubMed ID: 38181701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured nonprecious metal catalysts for oxygen reduction reaction.
    Wu G; Zelenay P
    Acc Chem Res; 2013 Aug; 46(8):1878-89. PubMed ID: 23815084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-Based Nanomaterials from Biopolymer Lignin via Catalytic Thermal Treatment at 700 to 1000 °C.
    Zhang X; Yan Q; Li J; Chu IW; Toghiani H; Cai Z; Zhang J
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic Bio-Graphene Based Nanomaterials through Different Iron Catalysts.
    Yan Q; Li J; Zhang X; Zhang J; Cai Z
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30332781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles.
    Yoon SM; Choi WM; Baik H; Shin HJ; Song I; Kwon MS; Bae JJ; Kim H; Lee YH; Choi JY
    ACS Nano; 2012 Aug; 6(8):6803-11. PubMed ID: 22765296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium as an innovative and effective catalyst for the synthesis of graphene-like materials from cellulose.
    Béguerie T; Weiss-Hortala E; Nzihou A
    Sci Rep; 2022 Dec; 12(1):21492. PubMed ID: 36513722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spray-Drying-Assisted Layer-by-Layer Assembly of Alginate, 3-Aminopropyltriethoxysilane, and Magnesium Hydroxide Flame Retardant and Its Catalytic Graphitization in Ethylene-Vinyl Acetate Resin.
    Wang Y; Li Z; Li Y; Wang J; Liu X; Song T; Yang X; Hao J
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10490-10500. PubMed ID: 29490139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysts on Formation of Carbon-Encapsulated Iron Nanoparticles from Kraft Lignin.
    Zhang X; Yan Q; Li J; Zhang J; Cai Z
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic hydrothermal liquefaction of alkali lignin for monophenols production over homologous biochar-supported copper catalysts in water.
    Zhang J; Ge Y; Li Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126656. PubMed ID: 37660845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel waste activated sludge multistage utilization strategy for preparing carbon-based Fenton-like catalysts: Catalytic performance assessment and micro-interfacial mechanisms.
    Ai J; Zhang W; Liao G; Chen F; Wang D
    Water Res; 2019 Mar; 150():473-487. PubMed ID: 30572278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.