These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds. de Figueiredo MA; Boldrin PF; Hart JJ; de Andrade MJB; Guilherme LRG; Glahn RP; Li L Plant Physiol Biochem; 2017 Feb; 111():193-202. PubMed ID: 27940270 [TBL] [Abstract][Full Text] [Related]
3. Biofortified Crops for Combating Hidden Hunger in South Africa: Availability, Acceptability, Micronutrient Retention and Bioavailability. Siwela M; Pillay K; Govender L; Lottering S; Mudau FN; Modi AT; Mabhaudhi T Foods; 2020 Jun; 9(6):. PubMed ID: 32575819 [TBL] [Abstract][Full Text] [Related]
4. Iron, Zinc and Phytic Acid Retention of Biofortified, Low Phytic Acid, and Conventional Bean Varieties When Preparing Common Household Recipes. Hummel M; Talsma EF; Taleon V; Londoño L; Brychkova G; Gallego S; Raatz B; Spillane C Nutrients; 2020 Feb; 12(3):. PubMed ID: 32121231 [TBL] [Abstract][Full Text] [Related]
5. Breeding and adoption of biofortified crops and their nutritional impact on human health. Kumar S; DePauw RM; Kumar S; Kumar J; Kumar S; Pandey MP Ann N Y Acad Sci; 2023 Feb; 1520(1):5-19. PubMed ID: 36479674 [TBL] [Abstract][Full Text] [Related]
6. Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris L.). Tako E; Beebe SE; Reed S; Hart JJ; Glahn RP Nutr J; 2014 Mar; 13():28. PubMed ID: 24669764 [TBL] [Abstract][Full Text] [Related]
7. Agronomic biofortification increases concentrations of zinc and storage proteins in common bean (Phaseolus vulgaris L.) grains. Kachinski WD; Ávila FW; Dos Reis AR; Muller MML; Mendes MC; Petranski PH Food Res Int; 2022 May; 155():111105. PubMed ID: 35400477 [TBL] [Abstract][Full Text] [Related]
8. Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Saltzman A; Birol E; Oparinde A; Andersson MS; Asare-Marfo D; Diressie MT; Gonzalez C; Lividini K; Moursi M; Zeller M Ann N Y Acad Sci; 2017 Feb; 1390(1):104-114. PubMed ID: 28253441 [TBL] [Abstract][Full Text] [Related]
9. Studies of Cream Seeded Carioca Beans (Phaseolus vulgaris L.) from a Rwandan Efficacy Trial: In Vitro and In Vivo Screening Tools Reflect Human Studies and Predict Beneficial Results from Iron Biofortified Beans. Tako E; Reed S; Anandaraman A; Beebe SE; Hart JJ; Glahn RP PLoS One; 2015; 10(9):e0138479. PubMed ID: 26381264 [TBL] [Abstract][Full Text] [Related]
10. Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus Vulgaris L.) bean-based diet. Reed S; Neuman H; Glahn RP; Koren O; Tako E PLoS One; 2017; 12(8):e0182431. PubMed ID: 28796793 [TBL] [Abstract][Full Text] [Related]
11. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.). Izquierdo P; Astudillo C; Blair MW; Iqbal AM; Raatz B; Cichy KA Theor Appl Genet; 2018 Aug; 131(8):1645-1658. PubMed ID: 29752522 [TBL] [Abstract][Full Text] [Related]
12. Iron Biofortified Carioca Bean ( Dias DM; Kolba N; Binyamin D; Ziv O; Regini Nutti M; Martino HSD; Glahn RP; Koren O; Tako E Nutrients; 2018 Dec; 10(12):. PubMed ID: 30551574 [TBL] [Abstract][Full Text] [Related]
13. Iron Concentrations in Biofortified Beans and Nonbiofortified Marketplace Varieties in East Africa Are Similar. Glahn RP; Wiesinger JA; Lung'aho MG J Nutr; 2020 Nov; 150(11):3013-3023. PubMed ID: 32678427 [TBL] [Abstract][Full Text] [Related]
14. Micronutrient deficiencies in African soils and the human nutritional nexus: opportunities with staple crops. Kihara J; Bolo P; Kinyua M; Rurinda J; Piikki K Environ Geochem Health; 2020 Sep; 42(9):3015-3033. PubMed ID: 31902042 [TBL] [Abstract][Full Text] [Related]
15. Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus. Bouis H World Rev Nutr Diet; 2018; 118():112-122. PubMed ID: 29656297 [TBL] [Abstract][Full Text] [Related]
16. Improving Zinc and Iron Biofortification in Wheat through Genomics Approaches. Wani SH; Gaikwad K; Razzaq A; Samantara K; Kumar M; Govindan V Mol Biol Rep; 2022 Aug; 49(8):8007-8023. PubMed ID: 35661970 [TBL] [Abstract][Full Text] [Related]
17. Biofortification-A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security. Dhaliwal SS; Sharma V; Shukla AK; Verma V; Kaur M; Shivay YS; Nisar S; Gaber A; Brestic M; Barek V; Skalicky M; Ondrisik P; Hossain A Molecules; 2022 Feb; 27(4):. PubMed ID: 35209127 [TBL] [Abstract][Full Text] [Related]
18. Biofortification in China: policy and practice. Campos-Bowers MH; Wittenmyer BF Health Res Policy Syst; 2007 Sep; 5():10. PubMed ID: 17897456 [TBL] [Abstract][Full Text] [Related]
19. Improving nutrition through biofortification-A systematic review. Ofori KF; Antoniello S; English MM; Aryee ANA Front Nutr; 2022; 9():1043655. PubMed ID: 36570169 [TBL] [Abstract][Full Text] [Related]
20. Multilocation dataset on seed Fe and Zn contents of bean ( Philipo M; Ndakidemi PA; Mbega ER Data Brief; 2020 Aug; 31():105664. PubMed ID: 32529007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]