BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 38440723)

  • 1. Role of leucine-rich repeat kinase 2 in severe acute pancreatitis.
    Otsuka Y; Minaga K; Kudo M; Watanabe T
    Front Immunol; 2024; 15():1364839. PubMed ID: 38440723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucine-rich repeat kinase 2 promotes the development of experimental severe acute pancreatitis.
    Otsuka Y; Hara A; Minaga K; Sekai I; Kurimoto M; Masuta Y; Takada R; Yoshikawa T; Kamata K; Kudo M; Watanabe T
    Clin Exp Immunol; 2023 Dec; 214(2):182-196. PubMed ID: 37847786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis.
    Halangk W; Lerch MM; Brandt-Nedelev B; Roth W; Ruthenbuerger M; Reinheckel T; Domschke W; Lippert H; Peters C; Deussing J
    J Clin Invest; 2000 Sep; 106(6):773-81. PubMed ID: 10995788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of Autophagy and Pancreatic Secretory Trypsin Inhibitor in Trypsinogen Activation in Acute Pancreatitis.
    Hirota M; Ohmuraya M; Hashimoto D; Suyama K; Sugita H; Ogawa M
    Pancreas; 2020 Apr; 49(4):493-497. PubMed ID: 32282761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LRRK2 maintains mitochondrial homeostasis and regulates innate immune responses to
    Weindel CG; Bell SL; Vail KJ; West KO; Patrick KL; Watson RO
    Elife; 2020 Feb; 9():. PubMed ID: 32057291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mouse Model of Acute and Chronic Pancreatitis.
    Minaga K; Watanabe T; Kamata K; Kudo M; Strober W
    Curr Protoc; 2022 Apr; 2(4):e422. PubMed ID: 35468264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Framework for interpretation of trypsin-antitrypsin imbalance and genetic heterogeneity in pancreatitis.
    Lin K; Gao F; Chen Q; Liu Q; Chen S
    Saudi J Gastroenterol; 2015; 21(4):198-207. PubMed ID: 26228362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic aspects of chronic pancreatitis: insights into aetiopathogenesis and clinical implications.
    Truninger K; Ammann RW; Blum HE; Witt H
    Swiss Med Wkly; 2001 Oct; 131(39-40):565-74. PubMed ID: 11775491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypsin-based laboratory methods and carboxypeptidase activation peptide in acute pancreatitis.
    Kylänpää-Bäck ML; Kemppainen E; Puolakkainen P
    JOP; 2002 Mar; 3(2):34-48. PubMed ID: 11884765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cathepsin B-Mediated Activation of Trypsinogen in Endocytosing Macrophages Increases Severity of Pancreatitis in Mice.
    Sendler M; Weiss FU; Golchert J; Homuth G; van den Brandt C; Mahajan UM; Partecke LI; Döring P; Gukovsky I; Gukovskaya AS; Wagh PR; Lerch MM; Mayerle J
    Gastroenterology; 2018 Feb; 154(3):704-718.e10. PubMed ID: 29079517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Pathogenesis of acute pancreatitis].
    Sendler M; Algül H
    Internist (Berl); 2021 Oct; 62(10):1034-1043. PubMed ID: 34529120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pancreas-specific SNAP23 depletion prevents pancreatitis by attenuating pathological basolateral exocytosis and formation of trypsin-activating autolysosomes.
    Dolai S; Takahashi T; Qin T; Liang T; Xie L; Kang F; Miao YF; Xie H; Kang Y; Manuel J; Winter E; Roche PA; Cattral MS; Gaisano HY
    Autophagy; 2021 Oct; 17(10):3068-3081. PubMed ID: 33213278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Defense mechanism to prevent ectopic activation of pancreatic digestive enzymes under physiological conditions and its breakdown in acute pancreatitis].
    Kaku M; Otsuko M
    Nihon Rinsho; 2004 Nov; 62(11):1977-83. PubMed ID: 15552876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LRRK2 and the Immune System.
    Dzamko NL
    Adv Neurobiol; 2017; 14():123-143. PubMed ID: 28353282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular rupture, exocytosis and actin interaction of endocytic vacuoles in pancreatic acinar cells: initiating events in acute pancreatitis.
    Chvanov M; De Faveri F; Moore D; Sherwood MW; Awais M; Voronina S; Sutton R; Criddle DN; Haynes L; Tepikin AV
    J Physiol; 2018 Jul; 596(13):2547-2564. PubMed ID: 29717784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mild Chronic Colitis Triggers Parkinsonism in LRRK2 Mutant Mice Through Activating TNF-α Pathway.
    Lin CH; Lin HY; Ho EP; Ke YC; Cheng MF; Shiue CY; Wu CH; Liao PH; Hsu AY; Chu LA; Liu YD; Lin YH; Tai YC; Shun CT; Chiu HM; Wu MS
    Mov Disord; 2022 Apr; 37(4):745-757. PubMed ID: 34918781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LRRK2 levels in immune cells are increased in Parkinson's disease.
    Cook DA; Kannarkat GT; Cintron AF; Butkovich LM; Fraser KB; Chang J; Grigoryan N; Factor SA; West AB; Boss JM; Tansey MG
    NPJ Parkinsons Dis; 2017; 3():11. PubMed ID: 28649611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypsinogen activation and glutathione content are linked to pancreatic injury in models of biliary acute pancreatitis.
    Lüthen R; Grendell JH; Niederau C; Häussinger D
    Int J Pancreatol; 1998 Dec; 24(3):193-202. PubMed ID: 9873954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuron-autonomous susceptibility to induced synuclein aggregation is exacerbated by endogenous
    MacIsaac S; Quevedo Melo T; Zhang Y; Volta M; Farrer MJ; Milnerwood AJ
    Brain Commun; 2020; 2(1):fcz052. PubMed ID: 32510053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interferon-γ induces leucine-rich repeat kinase LRRK2 via extracellular signal-regulated kinase ERK5 in macrophages.
    Kuss M; Adamopoulou E; Kahle PJ
    J Neurochem; 2014 Jun; 129(6):980-7. PubMed ID: 24479685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.