These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38440841)

  • 1. Plasmon-induced hot carrier distribution in a composite nanosystem: role of the adsorption site.
    Muhammed MM; Mokkath JH
    Phys Chem Chem Phys; 2024 Mar; 26(11):9037-9050. PubMed ID: 38440841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of a dopant atom on the distribution of hot electrons and holes in Au-doped Ag nano-clusters.
    Mokkath JH
    Phys Chem Chem Phys; 2024 Apr; 26(15):12168-12178. PubMed ID: 38591187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon induced hot carrier distribution in Ag
    Mokkath JH
    Chemphyschem; 2024 Mar; 25(5):e202300602. PubMed ID: 38185742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon induced hot carrier generation in a pyridine@Au20 composite.
    Mokkath JH
    Phys Chem Chem Phys; 2023 Nov; 25(42):28750-28760. PubMed ID: 37850351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot carrier creation in a nanoparticle dimer-molecule composite.
    Mokkath JH
    Phys Chem Chem Phys; 2024 May; 26(20):14796-14807. PubMed ID: 38717785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu-Ag alloy for engineering properties and applications based on the LSPR of metal nanoparticles.
    Jian CC; Zhang J; Ma X
    RSC Adv; 2020 Mar; 10(22):13277-13285. PubMed ID: 35492090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-Induced Direct Hot-Carrier Transfer at Metal-Acceptor Interfaces.
    Kumar PV; Rossi TP; Marti-Dafcik D; Reichmuth D; Kuisma M; Erhart P; Puska MJ; Norris DJ
    ACS Nano; 2019 Mar; 13(3):3188-3195. PubMed ID: 30768238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact Integration of TiO₂ Nanoparticles into the Cross-Points of 3D Vertically Stacked Ag Nanowires for Plasmon-Enhanced Photocatalysis.
    Linh VTN; Xiao X; Jung HS; Giannini V; Maier SA; Kim DH; Lee YI; Park SG
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30897804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy and Momentum Distribution of Surface Plasmon-Induced Hot Carriers Isolated
    Hartelt M; Terekhin PN; Eul T; Mahro AK; Frisch B; Prinz E; Rethfeld B; Stadtmüller B; Aeschlimann M
    ACS Nano; 2021 Dec; 15(12):19559-19569. PubMed ID: 34852458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Hot Electron-Mediated Hydrodehalogenation Kinetics on Nanostructured Ag Electrodes.
    Liu J; Cai ZY; Sun WX; Wang JZ; Shen XR; Zhan C; Devasenathipathy R; Zhou JZ; Wu DY; Mao BW; Tian ZQ
    J Am Chem Soc; 2020 Oct; 142(41):17489-17498. PubMed ID: 32941020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices.
    Tagliabue G; Jermyn AS; Sundararaman R; Welch AJ; DuChene JS; Pala R; Davoyan AR; Narang P; Atwater HA
    Nat Commun; 2018 Aug; 9(1):3394. PubMed ID: 30140064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IR-Driven Ultrafast Transfer of Plasmonic Hot Electrons in Nonmetallic Branched Heterostructures for Enhanced H
    Zhang Z; Jiang X; Liu B; Guo L; Lu N; Wang L; Huang J; Liu K; Dong B
    Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29327486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Models Capture Plasmon Dynamics in Ag Nanoparticles.
    Habib A; Lubbers N; Tretiak S; Nebgen B
    J Phys Chem A; 2023 May; 127(17):3768-3778. PubMed ID: 37078657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hot-Carrier Transfer across a Nanoparticle-Molecule Junction: The Importance of Orbital Hybridization and Level Alignment.
    Fojt J; Rossi TP; Kuisma M; Erhart P
    Nano Lett; 2022 Nov; 22(21):8786-8792. PubMed ID: 36200744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Photocatalysis with Nonthermalized Hot Carriers.
    Wu S; Chen Y; Gao S
    Phys Rev Lett; 2022 Aug; 129(8):086801. PubMed ID: 36053692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct hot-carrier transfer in plasmonic catalysis.
    Kumar PV; Rossi TP; Kuisma M; Erhart P; Norris DJ
    Faraday Discuss; 2019 May; 214():189-197. PubMed ID: 30855061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.