These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38440958)

  • 1. Controllable synthesis of star-shaped FeCoMnO
    Xia Z; Gao Y; Cai Q; Wang Y; Yang D; Li T; Dong A
    Chem Commun (Camb); 2024 Mar; 60(25):3409-3412. PubMed ID: 38440958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Controllable synthesis of star-shaped FeCoMnO
    Xia Z; Gao Y; Cai Q; Wang Y; Yang D; Li T; Dong A
    Chem Commun (Camb); 2024 Apr; 60(36):4860. PubMed ID: 38606575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of colloidal hexagonal bipyramid- and bifrustum-shaped ZnS nanocrystals into two-dimensional superstructures.
    van der Stam W; Gantapara AP; Akkerman QA; Soligno G; Meeldijk JD; van Roij R; Dijkstra M; de Mello Donega C
    Nano Lett; 2014 Feb; 14(2):1032-7. PubMed ID: 24433112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice.
    Zhuang Z; Peng Q; Zhang B; Li Y
    J Am Chem Soc; 2008 Aug; 130(32):10482-3. PubMed ID: 18636712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable self-assembly of PbS nanostars into ordered structures: close-packed arrays and patterned arrays.
    Huang T; Zhao Q; Xiao J; Qi L
    ACS Nano; 2010 Aug; 4(8):4707-16. PubMed ID: 20669899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
    Paik T; Diroll BT; Kagan CR; Murray CB
    J Am Chem Soc; 2015 May; 137(20):6662-9. PubMed ID: 25927895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals.
    Gu XW; Ye X; Koshy DM; Vachhani S; Hosemann P; Alivisatos AP
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2836-2841. PubMed ID: 28242704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trade-offs between Translational and Orientational Order in 2D Superlattices of Polygonal Nanocrystals with Differing Edge Count.
    Ondry JC; Frechette LB; Geissler PL; Alivisatos AP
    Nano Lett; 2022 Jan; 22(1):389-395. PubMed ID: 34935383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-dependent multiple twinning in nanocrystal superlattices.
    Rupich SM; Shevchenko EV; Bodnarchuk MI; Lee B; Talapin DV
    J Am Chem Soc; 2010 Jan; 132(1):289-96. PubMed ID: 19968283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of an Orientational Glass in a Superlattice of Elliptically-Faceted CdSe Nanocrystals.
    Abbas AS; Vargo E; Jamali V; Ercius P; Pieters PF; Brinn RM; Ben-Moshe A; Cho MG; Xu T; Alivisatos AP
    ACS Nano; 2022 Jun; 16(6):9339-9347. PubMed ID: 35608159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding and tailoring ligand interactions in the self-assembly of branched colloidal nanocrystals into planar superlattices.
    Castelli A; de Graaf J; Marras S; Brescia R; Goldoni L; Manna L; Arciniegas MP
    Nat Commun; 2018 Mar; 9(1):1141. PubMed ID: 29559652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices.
    Lee YH; Shi W; Lee HK; Jiang R; Phang IY; Cui Y; Isa L; Yang Y; Wang J; Li S; Ling XY
    Nat Commun; 2015 Apr; 6():6990. PubMed ID: 25923409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of high-index faceted gold nanocrystals to fabricate tunable coupled plasmonic superlattices.
    Zhang H; Guan C; Song N; Zhang Y; Liu H; Fang J
    Phys Chem Chem Phys; 2018 Jan; 20(5):3571-3580. PubMed ID: 29337328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of anisotropy gold nanocubes into large area two-dimensional monolayer superlattices.
    Li J; Liu X; Jin J; Yan N; Jiang W
    Nanotechnology; 2022 Jun; 33(38):. PubMed ID: 35697002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.
    Wei J; Schaeffer N; Pileni MP
    J Am Chem Soc; 2015 Nov; 137(46):14773-84. PubMed ID: 26549642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembly and Thermal Stability of Binary Superlattices of Gold and Silicon Nanocrystals.
    Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2013 Oct; 4(21):. PubMed ID: 24327828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals.
    Diroll BT; Jishkariani D; Cargnello M; Murray CB; Donnio B
    J Am Chem Soc; 2016 Aug; 138(33):10508-15. PubMed ID: 27472457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of liquid crystalline self-assembly of GdF₃ nanoplates by in-plane, out-of-plane SAXS.
    Paik T; Ko DK; Gordon TR; Doan-Nguyen V; Murray CB
    ACS Nano; 2011 Oct; 5(10):8322-30. PubMed ID: 21905726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.