These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38441151)

  • 21. Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity.
    Liu K; Yang H; Jiang Y; Liu Z; Zhang S; Zhang Z; Qiao Z; Lu Y; Cheng T; Terasaki O; Zhang Q; Gao C
    Nat Commun; 2023 Apr; 14(1):2424. PubMed ID: 37105957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. T porous PtIr bimetallic nanotubes with core shell structure for enhanced electrocatalysis on methanol oxidation.
    Zhang T; Pan J; Yuan J; Fang K; Niu L
    Nanotechnology; 2021 Jun; 32(36):. PubMed ID: 34038886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molybdenum-Carbide-Modified Nitrogen-Doped Carbon Vesicle Encapsulating Nickel Nanoparticles: A Highly Efficient, Low-Cost Catalyst for Hydrogen Evolution Reaction.
    Wang S; Wang J; Zhu M; Bao X; Xiao B; Su D; Li H; Wang Y
    J Am Chem Soc; 2015 Dec; 137(50):15753-9. PubMed ID: 26623664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable Pt-Ni Interaction Induced Construction of Disparate Atomically Dispersed Pt Sites for Acidic Hydrogen Evolution.
    Peng Y; Ma K; Xie T; Du J; Zheng L; Zhang F; Fan X; Peng W; Ji J; Li Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27089-27098. PubMed ID: 37226077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distance Effect of Ni-Pt Dual Sites for Active Hydrogen Transfer in Tandem Reaction.
    Wu H; Zhang B; Liang H; Zhai L; Wang G; Qin Y
    Innovation (Camb); 2020 Aug; 1(2):100029. PubMed ID: 34557707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NiSe
    Huo J; Chang Y; Xu A; Jia M; Jia J
    Phys Chem Chem Phys; 2024 Mar; 26(12):9413-9423. PubMed ID: 38446037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Liquid Metal Interfacial Growth and Exfoliation to Form Mesoporous Metallic Nanosheets for Alkaline Methanol Electroreforming.
    Wang S; Mao Q; Ren H; Wang W; Wang Z; Xu Y; Li X; Wang L; Wang H
    ACS Nano; 2022 Feb; 16(2):2978-2987. PubMed ID: 35061352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications.
    Fan Z; Zhang H
    Acc Chem Res; 2016 Dec; 49(12):2841-2850. PubMed ID: 27993013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid Acid/Base Electrolytic Cell for Hydrogen Generation and Methanol Conversion Implemented by Bifunctional Ni/MoN Nanorod Electrocatalyst.
    Rao C; Wang H; Chen K; Chen H; Ci S; Xu Q; Wen Z
    Small; 2024 Feb; 20(7):e2303300. PubMed ID: 37840438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alloying with Mn Enhances the Activity and Durability of the CoPt Catalyst toward the Methanol Oxidation Reaction.
    Deshpande P; Prasad BLV
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26554-26562. PubMed ID: 37224303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Galvanic Replacement Reaction: Enabling the Creation of Active Catalytic Structures.
    Kong X; Wu H; Lu K; Zhang X; Zhu Y; Lei H
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41205-41223. PubMed ID: 37638534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition.
    Gao Z; Qin Y
    Acc Chem Res; 2017 Sep; 50(9):2309-2316. PubMed ID: 28787132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ electrochemical redox tuning of Pd-Co hybrid electrocatalysts for high-performance methanol oxidation: Strong metal-support interaction.
    Lei H; Zhang Q
    J Colloid Interface Sci; 2021 Apr; 588():476-484. PubMed ID: 33429344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Building Oxime-Ni
    Zhen W; Yuan X; Ning X; Gong X; Xue C
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):868-876. PubMed ID: 31816223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The one-pot synthesis of CuNi nanoparticles with a Ni-rich surface for the electrocatalytic methanol oxidation reaction.
    An Y; Ijaz H; Huang M; Qu J; Hu S
    Dalton Trans; 2020 Feb; 49(5):1646-1651. PubMed ID: 31942885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile Synthesis of Cu/NiCu Electrocatalysts Integrating Alloy, Core-Shell, and One-Dimensional Structures for Efficient Methanol Oxidation Reaction.
    Wu D; Zhang W; Cheng D
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19843-19851. PubMed ID: 28537715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Agglomeration inhibition engineering of nickel-cobalt alloys by a sacrificial template for efficient urea electrolysis.
    Feng B; Jiang W; Deng R; Lu J; Tsiakaras P; Yin S
    J Colloid Interface Sci; 2024 Jun; 663():1019-1027. PubMed ID: 38452543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A carbon-promoted galvanic replacement method to synthesize efficient PdNi nanoalloy catalyst.
    Guo Z; Liu W; He Z; Wang Z; Li W; Zhang M
    J Colloid Interface Sci; 2024 Jun; 663():369-378. PubMed ID: 38412722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.