These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38441442)

  • 1. Potential Dependent Reorientation Controlling Activity of a Molecular Electrocatalyst.
    Gardner AM; Neri G; Siritanaratkul B; Jang H; Saeed KH; Donaldson PM; Cowan AJ
    J Am Chem Soc; 2024 Mar; 146(11):7130-7134. PubMed ID: 38441442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Electrode-Catalyst Interactions in Enabling Efficient CO
    Neri G; Donaldson PM; Cowan AJ
    J Am Chem Soc; 2017 Oct; 139(39):13791-13797. PubMed ID: 28895400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying the cation dependence of CO
    Banerji LC; Jang H; Gardner AM; Cowan AJ
    Chem Sci; 2024 Feb; 15(8):2889-2897. PubMed ID: 38404396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manganese Carbonyl Complexes as Selective Electrocatalysts for CO
    Siritanaratkul B; Eagle C; Cowan AJ
    Acc Chem Res; 2022 Apr; 55(7):955-965. PubMed ID: 35285618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ observation of the potential-dependent structure of an electrolyte/electrode interface by heterodyne-detected vibrational sum frequency generation.
    Sayama A; Nihonyanagi S; Ohshima Y; Tahara T
    Phys Chem Chem Phys; 2020 Jan; 22(4):2580-2589. PubMed ID: 31942883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ study of the low overpotential "dimer pathway" for electrocatalytic carbon dioxide reduction by manganese carbonyl complexes.
    Neri G; Donaldson PM; Cowan AJ
    Phys Chem Chem Phys; 2019 Apr; 21(14):7389-7397. PubMed ID: 30906938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reorientation-induced spectral diffusion in vibrational sum-frequency-generation spectroscopy.
    Rivera CA; Souna AJ; Bender JS; Manfred K; Fourkas JT
    J Phys Chem B; 2013 Dec; 117(49):15875-85. PubMed ID: 24088038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogenized Molecular Catalysts: Vibrational Sum-Frequency Spectroscopic, Electrochemical, and Theoretical Investigations.
    Ge A; Rudshteyn B; Videla PE; Miller CJ; Kubiak CP; Batista VS; Lian T
    Acc Chem Res; 2019 May; 52(5):1289-1300. PubMed ID: 31056907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing interfacial cation hydration at catalytic active sites and spectator sites on gold electrodes: understanding structure sensitive CO
    Rebstock JA; Zhu Q; Baker LR
    Chem Sci; 2022 Jun; 13(25):7634-7643. PubMed ID: 35872825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO
    Clark ML; Ge A; Videla PE; Rudshteyn B; Miller CJ; Song J; Batista VS; Lian T; Kubiak CP
    J Am Chem Soc; 2018 Dec; 140(50):17643-17655. PubMed ID: 30468391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct observation of bicarbonate and water reduction on gold: understanding the potential dependent proton source during hydrogen evolution.
    Deng GH; Zhu Q; Rebstock J; Neves-Garcia T; Baker LR
    Chem Sci; 2023 May; 14(17):4523-4531. PubMed ID: 37152268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the Gold/Water Interface with Surface-Specific Spectroscopy.
    Piontek SM; Naujoks D; Tabassum T; DelloStritto MJ; Jaugstetter M; Hosseini P; Corva M; Ludwig A; Tschulik K; Klein ML; Petersen PB
    ACS Phys Chem Au; 2023 Jan; 3(1):119-129. PubMed ID: 36718265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Observation of Carbon Dioxide Electroreduction on Gold: Site Blocking by the Stern Layer Controls CO
    Wallentine S; Bandaranayake S; Biswas S; Baker LR
    J Phys Chem Lett; 2020 Oct; 11(19):8307-8313. PubMed ID: 32946241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational Stark shift spectroscopy of catalysts under the influence of electric fields at electrode-solution interfaces.
    Bhattacharyya D; Videla PE; Cattaneo M; Batista VS; Lian T; Kubiak CP
    Chem Sci; 2021 Aug; 12(30):10131-10149. PubMed ID: 34377403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientational time correlation functions for vibrational sum-frequency generation. 2. Propionitrile.
    Liu S; Fourkas JT
    J Phys Chem B; 2014 Jul; 118(28):8406-19. PubMed ID: 24787273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational Sum Frequency Generation by the Quadrupolar Mechanism at the Nonpolar Benzene/Air Interface.
    Matsuzaki K; Nihonyanagi S; Yamaguchi S; Nagata T; Tahara T
    J Phys Chem Lett; 2013 May; 4(10):1654-8. PubMed ID: 26282974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational sum-frequency generation spectroscopy of electrode surfaces: studying the mechanisms of sustainable fuel generation and utilisation.
    Gardner AM; Saeed KH; Cowan AJ
    Phys Chem Chem Phys; 2019 Jun; 21(23):12067-12086. PubMed ID: 31143914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.
    Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW
    Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of water on low-overpotential CO
    GarcĂ­a Rey N; Dlott DD
    Phys Chem Chem Phys; 2017 Apr; 19(16):10491-10501. PubMed ID: 28383582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.