These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 384419)

  • 41. Interaction of Escherichia coli RNA polymerase with promoters of several coliphage and plasmid DNAs.
    von Gabain A; Bujard H
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):189-93. PubMed ID: 370823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selection of novel eukaryotic DNA polymerases by mutagenesis and genetic complementation of yeast.
    Venkatesan RN; Loeb LA
    Methods Mol Biol; 2003; 230():19-26. PubMed ID: 12824566
    [No Abstract]   [Full Text] [Related]  

  • 43. Interaction of escherichia coli RNA polymerase with the genome of Proteus mirabilis phage 5006M.
    Coetzee WF; Pretorius GH
    Virology; 1982 Feb; 117(1):11-8. PubMed ID: 7039087
    [No Abstract]   [Full Text] [Related]  

  • 44. DNA of the Streptomyces phage SH10: binding sites for Escherichia coli RNA polymerase and denaturation map.
    Klaus S; Vogel F; Gautschi J; Stålhammar-Carlemalm M; Meyer J
    Mol Gen Genet; 1983; 189(1):21-6. PubMed ID: 6343784
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A minimal RNA polymerase III transcription system.
    Kassavetis GA; Letts GA; Geiduschek EP
    EMBO J; 1999 Sep; 18(18):5042-51. PubMed ID: 10487756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Specific modification of DNA at E. coli RNA-polymerase binding sites].
    Petrenko VA; Semenova LN; Boldyrev AN; Kipriianov SM
    Mol Gen Mikrobiol Virusol; 1985 Dec; (12):19-25. PubMed ID: 3916215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electron microscopy analysis of the interaction between Escherichia coli DNA-dependent RNA polymerase and the replicative form of phage fd DNA. 1. Mapping of the binding sites.
    Giacomoni PU; Delain E; Le Pecq JB
    Eur J Biochem; 1977 Aug; 78(1):205-13. PubMed ID: 334531
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcription in yeast: a factor that stimulates yeast RNA polymerases.
    Di Mauro E; Hollenberg CP; Hall BD
    Proc Natl Acad Sci U S A; 1972 Oct; 69(10):2818-22. PubMed ID: 4562741
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter.
    Pribnow D
    Proc Natl Acad Sci U S A; 1975 Mar; 72(3):784-8. PubMed ID: 1093168
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The nucleotide sequence of an RNA polymerase binding site on bacteriophage fd DNA.
    Sugimoto K; Okamoto T; Sugisaki H; Takanami M
    Nature; 1975 Feb; 253(5491):410-4. PubMed ID: 1089210
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Termination-altering amino acid substitutions in the beta' subunit of Escherichia coli RNA polymerase identify regions involved in RNA chain elongation.
    Weilbaecher R; Hebron C; Feng G; Landick R
    Genes Dev; 1994 Dec; 8(23):2913-27. PubMed ID: 7527790
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression of Saccharomyces cerevisiae inorganic pyrophosphatase in Escherichia coli.
    Kurilova SA; Vorobjeva NN; Nazarova TI; Avaeva SM
    FEBS Lett; 1993 Nov; 333(3):280-2. PubMed ID: 8224193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyclic adenosine-5'-trimetaphosphate phosphorylates a histidine residue nearby the initiating substrate binding site of Escherichia coli DNA-dependent RNA-polymerase.
    Grachev MA; Mustaev AA
    FEBS Lett; 1982 Jan; 137(1):89-94. PubMed ID: 6279435
    [No Abstract]   [Full Text] [Related]  

  • 54. Investigation of the binding of Escherichia coli RNA polymerase to DNA from bacteriophages T2 and T7 by kinetic formaldehyde method and electron microscopy.
    Cherny DI; Aleksandrov AA; Zarudnaya MI; Kosaganov YN; Lazurkin YS; Beabealashvilli RS; Svochkina LP
    Eur J Biochem; 1977 Sep; 79(1):309-17. PubMed ID: 334547
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nucleotide sequence of the yeast 5S ribosomal RNA gene and adjacent putative control regions.
    Valenzuela P; Bell GI; Masiarz FR; DeGennaro LJ; Rutter WJ
    Nature; 1977 Jun; 267(5612):641-3. PubMed ID: 327335
    [No Abstract]   [Full Text] [Related]  

  • 56. In vitro transcription of the Bacillus subtilis phage phi 29 DNA by Bacillus subtilis and Escherichia coli RNA polymerases.
    Sogo JM; Lozano M; Salas M
    Nucleic Acids Res; 1984 Feb; 12(4):1943-60. PubMed ID: 6322128
    [TBL] [Abstract][Full Text] [Related]  

  • 57. T7 RNA polymerase can direct expression of influenza virus cap-binding protein (PB2) in Escherichia coli.
    Rosenberg AH; Studier FW
    Gene; 1987; 59(2-3):191-200. PubMed ID: 3325338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitation of the interaction of EScherichia coli RNA polymerase holoenzyme with double-helical DNA using a thermodynamically rigorous centrifugation method.
    Revzin A; Woychik RP
    Biochemistry; 1981 Jan; 20(2):250-6. PubMed ID: 7008838
    [No Abstract]   [Full Text] [Related]  

  • 59. Identifying regulators of transcript elongation in eukaryotes.
    Edwards AM; Kane CM
    Methods Enzymol; 1996; 274():419-36. PubMed ID: 8902822
    [No Abstract]   [Full Text] [Related]  

  • 60. RNA-polymerase binding at the promoters of the rRNA genes of Escherichia coli.
    Kiss I; Boros I; Udvardy A; Venetianer P; Delius H
    Biochim Biophys Acta; 1980 Oct; 609(3):435-47. PubMed ID: 6159922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.