BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38442000)

  • 1. Large-Scale Pretraining Improves Sample Efficiency of Active Learning-Based Virtual Screening.
    Cao Z; Sciabola S; Wang Y
    J Chem Inf Model; 2024 Mar; 64(6):1882-1891. PubMed ID: 38442000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity.
    Wicht KJ; Combrinck JM; Smith PJ; Egan TJ
    Bioorg Med Chem; 2015 Aug; 23(16):5210-7. PubMed ID: 25573118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery.
    Yang X; Wang Y; Byrne R; Schneider G; Yang S
    Chem Rev; 2019 Sep; 119(18):10520-10594. PubMed ID: 31294972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Ligand-based Big Data Deep Neural Network Models for Virtual Screening of Large Compound Libraries.
    Xiao T; Qi X; Chen Y; Jiang Y
    Mol Inform; 2018 Nov; 37(11):e1800031. PubMed ID: 29882343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining computational methods for hit to lead optimization in Mycobacterium tuberculosis drug discovery.
    Ekins S; Freundlich JS; Hobrath JV; Lucile White E; Reynolds RC
    Pharm Res; 2014 Feb; 31(2):414-35. PubMed ID: 24132686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to Prepare a Compound Collection Prior to Virtual Screening.
    Bologa CG; Ursu O; Oprea TI
    Methods Mol Biol; 2019; 1939():119-138. PubMed ID: 30848459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thompson Sampling─An Efficient Method for Searching Ultralarge Synthesis on Demand Databases.
    Klarich K; Goldman B; Kramer T; Riley P; Walters WP
    J Chem Inf Model; 2024 Feb; 64(4):1158-1171. PubMed ID: 38316125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning-Boosted Docking Enables the Efficient Structure-Based Virtual Screening of Giga-Scale Enumerated Chemical Libraries.
    Sivula T; Yetukuri L; Kalliokoski T; Käsnänen H; Poso A; Pöhner I
    J Chem Inf Model; 2023 Sep; 63(18):5773-5783. PubMed ID: 37655823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Transferable Compound Representation across Domains and Tasks for Low Data Drug Discovery.
    Abbasi K; Poso A; Ghasemi J; Amanlou M; Masoudi-Nejad A
    J Chem Inf Model; 2019 Nov; 59(11):4528-4539. PubMed ID: 31661955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmaceutical Machine Learning: Virtual High-Throughput Screens Identifying Promising and Economical Small Molecule Inhibitors of Complement Factor C1s.
    Chen JJ; Schmucker LN; Visco DP
    Biomolecules; 2018 May; 8(2):. PubMed ID: 29735903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning classification can reduce false positives in structure-based virtual screening.
    Adeshina YO; Deeds EJ; Karanicolas J
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18477-18488. PubMed ID: 32669436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of Ultralarge Compound Collections for Drug Discovery.
    Warr WA; Nicklaus MC; Nicolaou CA; Rarey M
    J Chem Inf Model; 2022 May; 62(9):2021-2034. PubMed ID: 35421301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Few-Shot Learning for Low-Data Drug Discovery.
    Vella D; Ebejer JP
    J Chem Inf Model; 2023 Jan; 63(1):27-42. PubMed ID: 36410391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-Based Virtual Screening of Commercially Available Compound Libraries.
    Kireev D
    Methods Mol Biol; 2016; 1439():65-76. PubMed ID: 27316988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging structure-based computational methods to screen the exploding accessible chemical space.
    Bedart C; Simoben CV; Schapira M
    Curr Opin Struct Biol; 2024 Jun; 86():102812. PubMed ID: 38603987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual Screening of a Chemically Diverse "Superscaffold" Library Enables Ligand Discovery for a Key GPCR Target.
    Grotsch K; Sadybekov AV; Hiller S; Zaidi S; Eremin D; Le A; Liu Y; Smith EC; Illiopoulis-Tsoutsouvas C; Thomas J; Aggarwal S; Pickett JE; Reyes C; Picazo E; Roth BL; Makriyannis A; Katritch V; Fokin VV
    ACS Chem Biol; 2024 Apr; 19(4):866-874. PubMed ID: 38598723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning-based Virtual Screening for STAT3 Anticancer Drug Target.
    Wadood A; Ajmal A; Junaid M; Rehman AU; Uddin R; Azam SS; Khan AZ; Ali A
    Curr Pharm Des; 2022; 28(36):3023-3032. PubMed ID: 35909285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing hit identification in Mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models.
    Ekins S; Reynolds RC; Franzblau SG; Wan B; Freundlich JS; Bunin BA
    PLoS One; 2013; 8(5):e63240. PubMed ID: 23667592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning and virtual drug screening.
    Carpenter KA; Cohen DS; Jarrell JT; Huang X
    Future Med Chem; 2018 Nov; 10(21):2557-2567. PubMed ID: 30288997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regression-Based Active Learning for Accessible Acceleration of Ultra-Large Library Docking.
    Marin E; Kovaleva M; Kadukova M; Mustafin K; Khorn P; Rogachev A; Mishin A; Guskov A; Borshchevskiy V
    J Chem Inf Model; 2024 Apr; 64(7):2612-2623. PubMed ID: 38157481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.