These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38442056)

  • 21. Myoelectric Control Performance of Two Degree of Freedom Hand-Wrist Prosthesis by Able-Bodied and Limb-Absent Subjects.
    Zhu Z; Li J; Boyd WJ; Martinez-Luna C; Dai C; Wang H; Wang H; Huang X; Farrell TR; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():893-904. PubMed ID: 35349446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fine detection of grasp force and posture by amputees via surface electromyography.
    Castellini C; Gruppioni E; Davalli A; Sandini G
    J Physiol Paris; 2009; 103(3-5):255-62. PubMed ID: 19665563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Position and stiffness modulation of a wrist haptic device using myoelectric interface.
    Antuvan CW; Masia L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():734-739. PubMed ID: 28813907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification.
    Smith LH; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4223-6. PubMed ID: 24110664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control.
    Crouch DL; Huang H
    J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-Invasive Analysis of Motor Unit Activation During Simultaneous and Continuous Wrist Movements.
    Chen C; Yu Y; Sheng X; Zhu X
    IEEE J Biomed Health Inform; 2022 May; 26(5):2106-2115. PubMed ID: 34910644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.
    Gazzoni M; Celadon N; Mastrapasqua D; Paleari M; Margaria V; Ariano P
    PLoS One; 2014; 9(10):e109943. PubMed ID: 25289669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discrimination of forearm's motions by surface EMG signals using neural network.
    Itakura N; Kinbara Y; Fuwa T; Sakamoto K
    Appl Human Sci; 1996 Nov; 15(6):287-94. PubMed ID: 9008983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Force/moment tracking performance during constant-pose, force-varying, bilaterally symmetric, hand-wrist tasks.
    Zhu Z; Martinez-Luna C; Li J; McDonald BE; Huang X; Farrell TR; Clancy EA
    J Electromyogr Kinesiol; 2023 Apr; 69():102753. PubMed ID: 36731399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proportional estimation of finger movements from high-density surface electromyography.
    Celadon N; Došen S; Binder I; Ariano P; Farina D
    J Neuroeng Rehabil; 2016 Aug; 13(1):73. PubMed ID: 27488270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.
    Hahne JM; Biessmann F; Jiang N; Rehbaum H; Farina D; Meinecke FC; Muller KR; Parra LC
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):269-79. PubMed ID: 24608685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stable, simultaneous and proportional 4-DoF prosthetic hand control via synergy-inspired linear interpolation: a case series.
    Lukyanenko P; Dewald HA; Lambrecht J; Kirsch RF; Tyler DJ; Williams MR
    J Neuroeng Rehabil; 2021 Mar; 18(1):50. PubMed ID: 33736656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control?
    Jiang N; Vujaklija I; Rehbaum H; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):549-58. PubMed ID: 24235278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of EEG measurement of upper limb movement in motor imagery training system.
    Suwannarat A; Pan-Ngum S; Israsena P
    Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Online Grasp Force Estimation From the Transient EMG.
    Martinez IJR; Mannini A; Clemente F; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2333-2341. PubMed ID: 32894718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous and Proportional Real-Time Myocontrol of Up to Three Degrees of Freedom of the Wrist and Hand.
    Nowak M; Vujaklija I; Sturma A; Castellini C; Farina D
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):459-469. PubMed ID: 35881594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies.
    Burns MK; Pei D; Vinjamuri R
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1351-1361. PubMed ID: 31670679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple EMG-driven musculoskeletal model enables consistent control performance during path tracing tasks.
    Crouch D; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1-4. PubMed ID: 28268266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cumulative Spike Train Estimation for Muscle Excitation Assessment From Surface EMG Using Spatial Spike Detection.
    Xu Y; Yu Y; Zhao Z; Chen C; Sheng X
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5335-5344. PubMed ID: 37643108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recurrent Convolutional Neural Networks as an Approach to Position-Aware Myoelectric Prosthesis Control.
    Williams H; Shehata AW; Dawson M; Scheme E; Hebert J; Pilarski P
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2243-2255. PubMed ID: 34986093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.