These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38442056)
61. Decoding Attempted Hand Movements in Stroke Patients Using Surface Electromyography. Jochumsen M; Niazi IK; Zia Ur Rehman M; Amjad I; Shafique M; Gilani SO; Waris A Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33256073 [TBL] [Abstract][Full Text] [Related]
62. Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms. Muceli S; Jiang N; Farina D IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):623-33. PubMed ID: 24132017 [TBL] [Abstract][Full Text] [Related]
63. Efficiently Training Two-DoF Hand-Wrist EMG-Force Models. Bardizbanian B; Zhu Z; Li J; Huang X; Dai C; Martinez-Luna C; McDonald BE; Farrell TR; Clancy EA Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():369-373. PubMed ID: 33018005 [TBL] [Abstract][Full Text] [Related]
64. High-density surface EMG maps from upper-arm and forearm muscles. Rojas-Martínez M; Mañanas MA; Alonso JF J Neuroeng Rehabil; 2012 Dec; 9():85. PubMed ID: 23216679 [TBL] [Abstract][Full Text] [Related]
65. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis. Bennett DA; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673 [TBL] [Abstract][Full Text] [Related]
66. Synergy matrices to estimate fluid wrist movements by surface electromyography. Choi C; Kim J Med Eng Phys; 2011 Oct; 33(8):916-23. PubMed ID: 21419687 [TBL] [Abstract][Full Text] [Related]
67. Grasp force estimation from the transient EMG using high-density surface recordings. Martinez IJR; Mannini A; Clemente F; Sabatini AM; Cipriani C J Neural Eng; 2020 Feb; 17(1):016052. PubMed ID: 31899898 [TBL] [Abstract][Full Text] [Related]
68. An ensemble-based regression approach for continuous estimation of wrist and fingers movements from surface electromyography. Alazrai R; Khalifeh A; Alnuman N; Alabed D; Mowafi Y Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():319-322. PubMed ID: 28268341 [TBL] [Abstract][Full Text] [Related]
69. Simultaneous and proportional control of wrist and hand degrees of freedom with kinematic prediction models from high-density EMG. Hasbani MH; Barsakcioglu DY; Jung MK; Farina D Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():764-767. PubMed ID: 36085883 [TBL] [Abstract][Full Text] [Related]
70. Parallels in control of voluntary and perturbation-evoked reach-to-grasp movements: EMG and kinematics. Gage WH; Zabjek KF; Hill SW; McIlroy WE Exp Brain Res; 2007 Aug; 181(4):627-37. PubMed ID: 17487477 [TBL] [Abstract][Full Text] [Related]
71. Improvement of grasping after motor imagery in C6-C7 tetraplegia: A kinematic and MEG pilot study. Mateo S; Di Rienzo F; Reilly KT; Revol P; Delpuech C; Daligault S; Guillot A; Jacquin-Courtois S; Luauté J; Rossetti Y; Collet C; Rode G Restor Neurol Neurosci; 2015; 33(4):543-55. PubMed ID: 26409412 [TBL] [Abstract][Full Text] [Related]
72. Is it Finger or Wrist Dexterity That is Missing in Current Hand Prostheses? Montagnani F; Controzzi M; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):600-9. PubMed ID: 25675462 [TBL] [Abstract][Full Text] [Related]
73. Effect of submaximal isometric wrist extension training on grip strength. Shimose R; Matsunaga A; Muro M Eur J Appl Physiol; 2011 Mar; 111(3):557-65. PubMed ID: 20931218 [TBL] [Abstract][Full Text] [Related]
74. Regressing grasping using force myography: an exploratory study. Sadeghi Chegani R; Menon C Biomed Eng Online; 2018 Oct; 17(1):159. PubMed ID: 30352593 [TBL] [Abstract][Full Text] [Related]
75. Concurrent Adaptation of Human and Machine Improves Simultaneous and Proportional Myoelectric Control. Hahne JM; Dahne S; Hwang HJ; Muller KR; Parra LC IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):618-27. PubMed ID: 25680209 [TBL] [Abstract][Full Text] [Related]
76. Validation of the Leap Motion Controller using markered motion capture technology. Smeragliuolo AH; Hill NJ; Disla L; Putrino D J Biomech; 2016 Jun; 49(9):1742-1750. PubMed ID: 27102160 [TBL] [Abstract][Full Text] [Related]
77. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis. Markovic M; Dosen S; Popovic D; Graimann B; Farina D J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274 [TBL] [Abstract][Full Text] [Related]
78. EMG-driven shared human-robot compliant control for in-hand object manipulation in hand prostheses. Khadivar F; Mendez V; Correia C; Batzianoulis I; Billard A; Micera S J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36384035 [No Abstract] [Full Text] [Related]
79. Basic study on combined motion estimation using multichannel surface EMG signals. Nagata K; Magatani K Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7865-8. PubMed ID: 22256163 [TBL] [Abstract][Full Text] [Related]
80. Robust neural decoding for dexterous control of robotic hand kinematics. Fan J; Vargas L; Kamper DG; Hu X Comput Biol Med; 2023 Aug; 162():107139. PubMed ID: 37301095 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]