These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38442078)

  • 1. Highly Effective Non-Noble MnO
    Álvarez-Hernández D; Megías-Sayago C; Penkova A; Centeno MÁ; Ivanova S
    ChemSusChem; 2024 Jul; 17(14):e202400115. PubMed ID: 38442078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of MnO
    Hayashi E; Yamaguchi Y; Kamata K; Tsunoda N; Kumagai Y; Oba F; Hara M
    J Am Chem Soc; 2019 Jan; 141(2):890-900. PubMed ID: 30612429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of K
    Poonsawat T; Promcharoen P; Meechai T; Chuaitammakit LC; Somsook E
    ACS Omega; 2023 Dec; 8(50):47846-47855. PubMed ID: 38144082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxy and surface oxygen effects on 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid on β-MnO
    Tharat B; Ngamwongwan L; Seehamongkol T; Rungtaweevoranit B; Nonkumwong J; Suthirakun S; Faungnawakij K; Chanlek N; Plucksacholatarn A; Nimsaila W; Prommin C; Junkaew A
    Nanoscale; 2024 Jan; 16(2):678-690. PubMed ID: 37964613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inexpensive but Highly Efficient Co-Mn Mixed-Oxide Catalysts for Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Rao KTV; Rogers JL; Souzanchi S; Dessbesell L; Ray MB; Xu CC
    ChemSusChem; 2018 Sep; 11(18):3323-3334. PubMed ID: 30006949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5-Hydroxymethylfurfural.
    Xu H; Li X; Hu W; Yu Z; Zhou H; Zhu Y; Lu L; Si C
    ChemSusChem; 2022 Jul; 15(13):e202200352. PubMed ID: 35575041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of the 2,5-Furandicarboxylic Acid Bio-Monomer From 5-Hydroxymethylfurfural Over a Molybdenum-Vanadium Oxide Catalyst.
    Liu J; Wen S; Wang F; Zhu X; Zeng Z; Yin D
    Front Chem; 2022; 10():853112. PubMed ID: 35372283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling Natural Halloysite Nanotubes and Bimetallic Pt-Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Zhong X; Yuan P; Wei Y; Liu D; Losic D; Li M
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3949-3960. PubMed ID: 35015494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruthenium Supported on High-Surface-Area Zirconia as an Efficient Catalyst for the Base-Free Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Pichler CM; Al-Shaal MG; Gu D; Joshi H; Ciptonugroho W; Schüth F
    ChemSusChem; 2018 Jul; 11(13):2083-2090. PubMed ID: 29761659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative Protocols in the Catalytic Oxidation of 5-Hydroxymethylfurfural.
    Su T; Zhao D; Wang Y; Lü H; Varma RS; Len C
    ChemSusChem; 2021 Jan; 14(1):266-280. PubMed ID: 33200564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran using manganese dioxide with different crystal structures: A comparative study.
    Lin KA; Oh WD; Zheng MW; Kwon E; Lee J; Lin JY; Duan X; Ghanbari F
    J Colloid Interface Sci; 2021 Jun; 592():416-429. PubMed ID: 33691223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template-Free Synthesis of Mesoporous β-MnO
    Yamaguchi Y; Aono R; Hayashi E; Kamata K; Hara M
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36004-36013. PubMed ID: 32805787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using bimetallic Pt-Cu alloy nanoparticles as catalysts.
    Cheng X; Li S; Liu S; Xin Y; Yang J; Chen B; Liu H
    Chem Commun (Camb); 2022 Jan; 58(8):1183-1186. PubMed ID: 34981091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneously-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with MnO
    Hayashi E; Komanoya T; Kamata K; Hara M
    ChemSusChem; 2017 Feb; 10(4):654-658. PubMed ID: 27925403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic removal of toluene using MnO
    Gong P; He F; Xie J; Fang D
    Chemosphere; 2023 Mar; 318():137938. PubMed ID: 36702414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Peng Y; Qiu B; Ding S; Hu M; Zhang Y; Jiao Y; Fan X; Parlett CMA
    Chempluschem; 2024 Jan; 89(1):e202300545. PubMed ID: 37884457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst.
    Wang KF; Liu CL; Sui KY; Guo C; Liu CZ
    Chembiochem; 2018 Apr; 19(7):654-659. PubMed ID: 29334175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of α-MnO
    Yang Q; Li Q; Li L; Peng Y; Wang D; Ma Y; Li J
    J Hazard Mater; 2021 Feb; 403():123811. PubMed ID: 33264910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen Vacancy-Induced Metal-Support Interactions in AuPd/ZrO
    Chen Y; Sun L; Li Y; Cao Y; Guan W; Pan J; Zhang Z; Zhang Y
    Inorg Chem; 2023 Sep; 62(37):15277-15292. PubMed ID: 37656824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Holey 2 D Mn
    Bao L; Sun FZ; Zhang GY; Hu TL
    ChemSusChem; 2020 Feb; 13(3):548-555. PubMed ID: 31714031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.