These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38442440)

  • 1. Target-specific novel molecules with their recipe: Incorporating synthesizability in the design process.
    Krishnan SR; Bung N; Srinivasan R; Roy A
    J Mol Graph Model; 2024 Jun; 129():108734. PubMed ID: 38442440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand Design.
    Skalic M; Sabbadin D; Sattarov B; Sciabola S; De Fabritiis G
    Mol Pharm; 2019 Oct; 16(10):4282-4291. PubMed ID: 31437001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A flexible data-free framework for structure-based
    Du H; Jiang D; Zhang O; Wu Z; Gao J; Zhang X; Wang X; Deng Y; Kang Y; Li D; Pan P; Hsieh CY; Hou T
    Chem Sci; 2023 Nov; 14(43):12166-12181. PubMed ID: 37969589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Intelligence-Enabled De Novo Design of Novel Compounds that Are Synthesizable.
    Bhisetti G; Fang C
    Methods Mol Biol; 2022; 2390():409-419. PubMed ID: 34731479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragment library design: using cheminformatics and expert chemists to fill gaps in existing fragment libraries.
    Kutchukian PS; So SS; Fischer C; Waller CL
    Methods Mol Biol; 2015; 1289():43-53. PubMed ID: 25709032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetically Feasible De Novo Molecular Design of Leads Based on a Reinforcement Learning Model: AI-Assisted Discovery of an Anti-IBD Lead Targeting CXCR4.
    Jiang X; Lu L; Li J; Jiang J; Zhang J; Zhou S; Wen H; Cai H; Luo X; Li Z; Wang J; Ju B; Bai R
    J Med Chem; 2024 Jun; 67(12):10057-10075. PubMed ID: 38863440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LEAP into the Pfizer Global Virtual Library (PGVL) space: creation of readily synthesizable design ideas automatically.
    Hu Q; Peng Z; Kostrowicki J; Kuki A
    Methods Mol Biol; 2011; 685():253-76. PubMed ID: 20981528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating Reaction Schemes, Reagent Databases, and Virtual Libraries into Fragment-Based Design by Reinforcement Learning.
    Sauer S; Matter H; Hessler G; Grebner C
    J Chem Inf Model; 2023 Sep; 63(18):5709-5726. PubMed ID: 37668352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MolProphet: A One-Stop, General Purpose, and AI-Based Platform for the Early Stages of Drug Discovery.
    Yang K; Xie Z; Li Z; Qian X; Sun N; He T; Xu Z; Jiang J; Mei Q; Wang J; Qu S; Xu X; Chen C; Ju B
    J Chem Inf Model; 2024 Apr; 64(8):2941-2947. PubMed ID: 38563534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards systematic exploration of chemical space: building the fragment library module in molecular property diagnostic suite.
    Gaur AS; John L; Kumar N; Vivek MR; Nagamani S; Mahanta HJ; Sastry GN
    Mol Divers; 2023 Jun; 27(3):1459-1468. PubMed ID: 35925528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative machine learning for de novo drug discovery: A systematic review.
    Martinelli DD
    Comput Biol Med; 2022 Jun; 145():105403. PubMed ID: 35339849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VGAE-MCTS: A New Molecular Generative Model Combining the Variational Graph Auto-Encoder and Monte Carlo Tree Search.
    Iwata H; Nakai T; Koyama T; Matsumoto S; Kojima R; Okuno Y
    J Chem Inf Model; 2023 Dec; 63(23):7392-7400. PubMed ID: 37993764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery.
    Yang X; Wang Y; Byrne R; Schneider G; Yang S
    Chem Rev; 2019 Sep; 119(18):10520-10594. PubMed ID: 31294972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of Ultralarge Compound Collections for Drug Discovery.
    Warr WA; Nicklaus MC; Nicolaou CA; Rarey M
    J Chem Inf Model; 2022 May; 62(9):2021-2034. PubMed ID: 35421301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Based
    Ma B; Terayama K; Matsumoto S; Isaka Y; Sasakura Y; Iwata H; Araki M; Okuno Y
    J Chem Inf Model; 2021 Jul; 61(7):3304-3313. PubMed ID: 34242036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software.
    Liu CH; Korablyov M; Jastrzębski S; Włodarczyk-Pruszyński P; Bengio Y; Segler M
    J Chem Inf Model; 2022 May; 62(10):2293-2300. PubMed ID: 35452226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CHIPMUNK: A Virtual Synthesizable Small-Molecule Library for Medicinal Chemistry, Exploitable for Protein-Protein Interaction Modulators.
    Humbeck L; Weigang S; Schäfer T; Mutzel P; Koch O
    ChemMedChem; 2018 Mar; 13(6):532-539. PubMed ID: 29392860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational approach to de novo discovery of fragment binding for novel protein states.
    Konteatis ZD; Klon AE; Zou J; Meshkat S
    Methods Enzymol; 2011; 493():357-80. PubMed ID: 21371598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Counting on Fragment Based Drug Design Approach for Drug Discovery.
    Kashyap A; Singh PK; Silakari O
    Curr Top Med Chem; 2018; 18(27):2284-2293. PubMed ID: 30499406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.