These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38442496)

  • 1. Deep reinforcement learning for the direct optimization of gradient separations in liquid chromatography.
    Kensert A; Libin P; Desmet G; Cabooter D
    J Chromatogr A; 2024 Apr; 1720():464768. PubMed ID: 38442496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Q-learning for the selection of optimal isocratic scouting runs in liquid chromatography.
    Kensert A; Collaerts G; Efthymiadis K; Desmet G; Cabooter D
    J Chromatogr A; 2021 Feb; 1638():461900. PubMed ID: 33485027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A perspective on the use of deep deterministic policy gradient reinforcement learning for retention time modeling in reversed-phase liquid chromatography.
    Kensert A; Desmet G; Cabooter D
    J Chromatogr A; 2024 Jan; 1713():464570. PubMed ID: 38101304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced selectivity and search speed for method development using one-segment-per-component optimization strategies.
    Tyteca E; Vanderlinden K; Favier M; Clicq D; Cabooter D; Desmet G
    J Chromatogr A; 2014 Sep; 1358():145-54. PubMed ID: 25039066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of Reinforcement Learning in a Virtual Robotic Surgical Simulation.
    Bourdillon AT; Garg A; Wang H; Woo YJ; Pavone M; Boyd J
    Surg Innov; 2023 Feb; 30(1):94-102. PubMed ID: 35503302
    [No Abstract]   [Full Text] [Related]  

  • 6. Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization.
    Tarafder A; Aumann L; Müller-Späth T; Morbidelli M
    J Chromatogr A; 2007 Oct; 1167(1):42-53. PubMed ID: 17765250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High resolution two-dimensional liquid chromatography coupled with mass spectrometry for robust and sensitive characterization of therapeutic antibodies at the peptide level.
    Stoll DR; Lhotka HR; Harmes DC; Madigan B; Hsiao JJ; Staples GO
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Dec; 1134-1135():121832. PubMed ID: 31790917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength.
    Wolcott RG; Dolan JW; Snyder LR
    J Chromatogr A; 2000 Feb; 869(1-2):3-25. PubMed ID: 10720221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian optimization of comprehensive two-dimensional liquid chromatography separations.
    Boelrijk J; Pirok B; Ensing B; Forré P
    J Chromatogr A; 2021 Dec; 1659():462628. PubMed ID: 34731752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with Uncertainty.
    Kim M; Kim JS; Choi MS; Park JH
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-assisted multi-segment gradient optimization in ion chromatography.
    Tyteca E; Park SH; Shellie RA; Haddad PR; Desmet G
    J Chromatogr A; 2015 Feb; 1381():101-9. PubMed ID: 25596760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided gradient optimization of hydrophilic interaction liquid chromatographic separations of intact proteins and protein glycoforms.
    van Schaick G; Pirok BWJ; Haselberg R; Somsen GW; Gargano AFG
    J Chromatogr A; 2019 Aug; 1598():67-76. PubMed ID: 31104847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm.
    De Beer M; Lynen F; Chen K; Ferguson P; Hanna-Brown M; Sandra P
    Anal Chem; 2010 Mar; 82(5):1733-43. PubMed ID: 20146446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography.
    Stoll DR; Sajulga RW; Voigt BN; Larson EJ; Jeong LN; Rutan SC
    J Chromatogr A; 2017 Nov; 1523():162-172. PubMed ID: 28747254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-driven optimization of complex gradients in comprehensive two-dimensional liquid chromatography.
    Molenaar SRA; Bos TS; Boelrijk J; Dahlseid TA; Stoll DR; Pirok BWJ
    J Chromatogr A; 2023 Sep; 1707():464306. PubMed ID: 37639847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing LC×LC separations through multi-task Bayesian optimization.
    Boelrijk J; Molenaar SRA; Bos TS; Dahlseid TA; Ensing B; Stoll DR; Forré P; Pirok BWJ
    J Chromatogr A; 2024 Jul; 1726():464941. PubMed ID: 38749274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reward-Adaptive Reinforcement Learning: Dynamic Policy Gradient Optimization for Bipedal Locomotion.
    Huang C; Wang G; Zhou Z; Zhang R; Lin L
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7686-7695. PubMed ID: 36409817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous action deep reinforcement learning for propofol dosing during general anesthesia.
    Schamberg G; Badgeley M; Meschede-Krasa B; Kwon O; Brown EN
    Artif Intell Med; 2022 Jan; 123():102227. PubMed ID: 34998516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NVIF: Neighboring Variational Information Flow for Cooperative Large-Scale Multiagent Reinforcement Learning.
    Chai J; Zhu Y; Zhao D
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37672377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relating Human Error-Based Learning to Modern Deep RL Algorithms.
    Garibbo M; Ludwig CJH; Lepora NF; Aitchison L
    Neural Comput; 2024 Dec; 37(1):128-159. PubMed ID: 39383023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.