BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38442561)

  • 1. Green infant formula analysis: Optimizing headspace solid-phase microextraction of carbonyl compounds associated with lipid peroxidation using GC-MS and pentafluorophenylhydrazine derivatization.
    Custodio-Mendoza JA; Lopez Blanco A; Ares-Fuentes AM; Carro Díaz AM
    Talanta; 2024 Jun; 273():125816. PubMed ID: 38442561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality-by-design approach for development of aqueous headspace microextraction GC-MS method for targeted metabolomics of small aldehydes in plasma of cardiovascular patients.
    Hanafi RS; Lämmerhofer M
    Anal Chim Acta; 2022 Aug; 1221():340176. PubMed ID: 35934390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous determination of carbonyl compounds related to thermal treatment and oxidative stability of infant formulas by gas-diffusion microextraction and high-performance liquid chromatography with ultraviolet detection.
    Custodio-Mendoza JA; Muñoz-Menendez L; España-Fariñas MP; Valente IM; Rodrigues JA; Almeida PJ; Lorenzo RA; Carro AM
    Anal Chim Acta; 2024 Feb; 1288():342164. PubMed ID: 38220296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of Headspace Solid-Phase Microextraction (HS-SPME) Parameters for the Analysis of Pyrazines in Yeast Extract via Gas Chromatography Mass Spectrometry (GC-MS).
    Raza A; Begum N; Song H; Li K; Li P
    J Food Sci; 2019 Aug; 84(8):2031-2041. PubMed ID: 31276204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the HS-SPME-GC-IT/MS method using a central composite design for volatile carbonyl compounds determination in beers.
    Moreira N; Meireles S; Brandão T; de Pinho PG
    Talanta; 2013 Dec; 117():523-31. PubMed ID: 24209376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous determination of 76 micropollutants in water samples by headspace solid phase microextraction and gas chromatography-mass spectrometry.
    Martínez C; Ramírez N; Gómez V; Pocurull E; Borrull F
    Talanta; 2013 Nov; 116():937-45. PubMed ID: 24148498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of malondialdehyde in human blood by headspace-solid phase micro-extraction gas chromatography-mass spectrometry after derivatization with 2,2,2-trifluoroethylhydrazine.
    Shin HS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Nov; 877(29):3707-11. PubMed ID: 19800854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Rapid screening of Chemical Weapons Convention-related chemicals in oil matrix by headspace solid-phase microextraction and gas chromatography-mass spectrometry].
    Chen J; Liu YL; Xu B; Liu Q; Xie JW
    Se Pu; 2023 Apr; 41(4):348-358. PubMed ID: 37005922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of headspace solid-phase microextraction gas chromatography-atomic emission detection analysis of monomethylmercury.
    Geerdink RB; Breidenbach R; Epema OJ
    J Chromatogr A; 2007 Dec; 1174(1-2):7-12. PubMed ID: 17904566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentialities of two solventless extraction approaches--stir bar sorptive extraction and headspace solid-phase microextraction for determination of higher alcohol acetates, isoamyl esters and ethyl esters in wines.
    Perestrelo R; Nogueira JM; Câmara JS
    Talanta; 2009 Dec; 80(2):622-30. PubMed ID: 19836529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and optimization of a HS-SPME-GC-MS methodology to quantify volatile carbonyl compounds in Port wines.
    Moreira N; Araújo AM; Rogerson F; Vasconcelos I; Freitas V; Pinho PG
    Food Chem; 2019 Jan; 270():518-526. PubMed ID: 30174081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Quantitative determination of seven major absorbed volatile constituents in mice brain, liver and blood after intragastric administration of Asari Radix et Rhizoma suspension by headspace-solid phase microextraction-gas chromatography-mass spectrometry].
    Zhang ZW; Liu GX; Xie DM; Tian F; Jia YK; Xu F; Shang MY; Wang X; Cai SQ
    Zhongguo Zhong Yao Za Zhi; 2016 Jan; 41(2):285-293. PubMed ID: 28861975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimisation and validation of a HS-SPME-GC-IT/MS method for analysis of carbonyl volatile compounds as biomarkers in human urine: Application in a pilot study to discriminate individuals with smoking habits.
    Calejo I; Moreira N; Araújo AM; Carvalho M; Bastos Mde L; de Pinho PG
    Talanta; 2016 Feb; 148():486-93. PubMed ID: 26653476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical artefacts: H
    Sansom CE; Perry NB
    Phytochem Anal; 2022 Apr; 33(3):386-391. PubMed ID: 34708908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Headspace solid-phase microextraction-gas chromatography-mass spectrometry characterization of propolis volatile compounds.
    Pellati F; Prencipe FP; Benvenuti S
    J Pharm Biomed Anal; 2013 Oct; 84():103-11. PubMed ID: 23807002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of solid-phase micro-extraction coupled to gas chromatography-mass spectrometry for the headspace analysis of volatile compounds in cocoa products.
    Ducki S; Miralles-Garcia J; Zumbé A; Tornero A; Storey DM
    Talanta; 2008 Feb; 74(5):1166-74. PubMed ID: 18371766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Approach to the Optimization of Conditions Using HS-SPME/GC-MS for Characterization of Volatile Compounds in
    Ramos ALCC; Nogueira LA; Silva MR; do Carmo Mazzinghy AC; Mariano APX; de Albuquerque Rodrigues TN; de Paula ACCFF; de Melo AC; Augusti R; de Araújo RLB; Lacerda ICA; Melo JOF
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens.
    Souza Silva ÉA; Saboia G; Jorge NC; Hoffmann C; Dos Santos Isaias RM; Soares GLG; Zini CA
    Talanta; 2017 Dec; 175():9-20. PubMed ID: 28842040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibre selection based on an overall analytical feature comparison for the solid-phase microextraction of trihalomethanes from drinking water.
    San Juan PM; Carrillo JD; Tena MT
    J Chromatogr A; 2007 Jan; 1139(1):27-35. PubMed ID: 17109874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization and validation of a head space solid-phase microextraction-arrow gas chromatography-mass spectrometry method using central composite design for determination of aroma compounds in Chinese liquor (Baijiu).
    Zhang X; Wang C; Wang L; Chen S; Xu Y
    J Chromatogr A; 2020 Jan; 1610():460584. PubMed ID: 31607446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.