These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38442592)
21. Faster recovery of a diatom from UV damage under ocean acidification. Wu Y; Campbell DA; Gao K J Photochem Photobiol B; 2014 Nov; 140():249-54. PubMed ID: 25173760 [TBL] [Abstract][Full Text] [Related]
22. Effect of ocean acidification on iron availability to marine phytoplankton. Shi D; Xu Y; Hopkinson BM; Morel FM Science; 2010 Feb; 327(5966):676-9. PubMed ID: 20075213 [TBL] [Abstract][Full Text] [Related]
23. Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Tatters AO; Roleda MY; Schnetzer A; Fu F; Hurd CL; Boyd PW; Caron DA; Lie AA; Hoffmann LJ; Hutchins DA Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20120437. PubMed ID: 23980240 [TBL] [Abstract][Full Text] [Related]
24. Combined effects of seawater acidification and benzo(a)pyrene on the physiological performance of the marine bloom-forming diatom Skeletonema costatum. Li F; Jiang L; Zhang T; Qiu J; Lv D; Su T; Li W; Xu J; Wang H Mar Environ Res; 2021 Jul; 169():105396. PubMed ID: 34171593 [TBL] [Abstract][Full Text] [Related]
25. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO Li F; Beardall J; Collins S; Gao K Glob Chang Biol; 2017 Jan; 23(1):127-137. PubMed ID: 27629864 [TBL] [Abstract][Full Text] [Related]
26. Enhancement of diatom growth and phytoplankton productivity with reduced O Sun JZ; Wang T; Huang R; Yi X; Zhang D; Beardall J; Hutchins DA; Liu X; Wang X; Deng Z; Li G; Gao G; Gao K Commun Biol; 2022 Jan; 5(1):54. PubMed ID: 35031680 [TBL] [Abstract][Full Text] [Related]
27. Simulated ocean acidification altered community composition and growth of a coastal phytoplankton assemblage (South West coast of India, eastern Arabian Sea). Sharma D; Biswas H; Bandyopadhyay D Environ Sci Pollut Res Int; 2022 Mar; 29(13):19244-19261. PubMed ID: 34714479 [TBL] [Abstract][Full Text] [Related]
28. Mechanisms underlying the alleviated cadmium toxicity in marine diatoms adapted to ocean acidification. Zhang Z; Ma J; Chen F; Chen Y; Pan K; Liu H J Hazard Mater; 2024 Feb; 463():132804. PubMed ID: 37890381 [TBL] [Abstract][Full Text] [Related]
29. Survival of Nutrient-Starved Diatoms Under Ocean Acidification: Perspective from Nutrient Sensing, Cadmium Detection, and Nitrogen Assimilation. Zhang Z; Pan K; Liu H Bull Environ Contam Toxicol; 2023 Dec; 112(1):21. PubMed ID: 38150047 [TBL] [Abstract][Full Text] [Related]
30. Fluctuating seawater pCO Wilson-McNeal A; Hird C; Hobbs C; Nielson C; Smith KE; Wilson RW; Lewis C Sci Total Environ; 2020 Dec; 748():141370. PubMed ID: 32814294 [TBL] [Abstract][Full Text] [Related]
31. Adaptation of a marine diatom to ocean acidification increases its sensitivity to toxic metal exposure. Dai X; Zhang J; Zeng X; Huang J; Lin J; Lu Y; Liang S; Ye M; Xiao M; Zhao J; Overmans S; Xia J; Jin P Mar Pollut Bull; 2022 Oct; 183():114056. PubMed ID: 36058179 [TBL] [Abstract][Full Text] [Related]
32. Hidden cost of pH variability in seagrass beds on marine calcifiers under ocean acidification. Cossa D; Infantes E; Dupont S Sci Total Environ; 2024 Mar; 915():170169. PubMed ID: 38244616 [TBL] [Abstract][Full Text] [Related]
33. Influence of ocean acidification on thermal reaction norms of carbon metabolism in the marine diatom Phaeodactylum tricornutum. Tong S; Xu D; Wang Y; Zhang X; Li Y; Wu H; Ye N Mar Environ Res; 2021 Feb; 164():105233. PubMed ID: 33310685 [TBL] [Abstract][Full Text] [Related]
34. Interactive Effects of CO Laws EA; McClellan SA; Passow U J Phycol; 2020 Dec; 56(6):1614-1624. PubMed ID: 32750165 [TBL] [Abstract][Full Text] [Related]
35. Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability. Thamatrakoln K; Bailleul B; Brown CM; Gorbunov MY; Kustka AB; Frada M; Joliot PA; Falkowski PG; Bidle KD Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20123-8. PubMed ID: 24277817 [TBL] [Abstract][Full Text] [Related]
36. High nutrient availability modulates photosynthetic performance and biochemical components of the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in response to ocean acidification. Long C; Zhang Y; Wei Z; Long L Mar Environ Res; 2024 Feb; 194():106339. PubMed ID: 38182500 [TBL] [Abstract][Full Text] [Related]
37. Optimizing marine macrophyte capacity to locally ameliorate ocean acidification under variable light and flow regimes: Insights from an experimental approach. Ricart AM; Honisch B; Fachon E; Hunt CW; Salisbury J; Arnold SN; Price NN PLoS One; 2023; 18(10):e0288548. PubMed ID: 37819926 [TBL] [Abstract][Full Text] [Related]
38. Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Wingert CJ; Cochlan WP Harmful Algae; 2021 Jul; 107():102030. PubMed ID: 34456015 [TBL] [Abstract][Full Text] [Related]
39. Photosynthesis acclimation under severely fluctuating light conditions allows faster growth of diatoms compared with dinoflagellates. Zhou L; Wu S; Gu W; Wang L; Wang J; Gao S; Wang G BMC Plant Biol; 2021 Apr; 21(1):164. PubMed ID: 33794787 [TBL] [Abstract][Full Text] [Related]
40. Photoacclimation State of Thalassiosira weissflogii is not Affected by Changes in Optical Depth Under A Fluctuating Light Regime Simulating Deep Mixing Brown M; Milligan A; Behrenfeld M J Phycol; 2021 Aug; 57(4):1212-1222. PubMed ID: 33590492 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]