BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38442751)

  • 1. Cysteine and thiosulfate promoted cadmium immobilization in strain G303 by the formation of extracellular CdS.
    Zhang S; Song M; Zhang J; Wang H
    Sci Total Environ; 2024 May; 923():171457. PubMed ID: 38442751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of cadmium sulfide nanoparticles mediates cadmium resistance and light utilization of the deep-sea bacterium Idiomarina sp. OT37-5b.
    Ma N; Sha Z; Sun C
    Environ Microbiol; 2021 Feb; 23(2):934-948. PubMed ID: 32815245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium sulfide nanoparticle biomineralization and biofilm formation mediate cadmium resistance of the deep-sea bacterium Pseudoalteromonas sp. MT33b.
    Ma N; Sun C
    Environ Microbiol Rep; 2021 Jun; 13(3):325-336. PubMed ID: 33511774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide.
    Sharma PK; Balkwill DL; Frenkel A; Vairavamurthy MA
    Appl Environ Microbiol; 2000 Jul; 66(7):3083-7. PubMed ID: 10877810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Earthworm gut bacteria facilitate cadmium immobilization through the formation of CdS nanoparticles.
    Xu B; Chu T; Zhang R; Yang R; Zhu M; Guo F; Zan S
    Chemosphere; 2024 Aug; 361():142453. PubMed ID: 38821127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance properties and adaptation mechanism of cadmium in an enriched strain, Cupriavidus nantongensis X1
    Fang L; Zhu H; Geng Y; Zhang G; Zhang H; Shi T; Wu X; Li QX; Hua R
    J Hazard Mater; 2022 Jul; 434():128935. PubMed ID: 35461001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal tolerance in Stenotrophomonas maltophilia.
    Pages D; Rose J; Conrod S; Cuine S; Carrier P; Heulin T; Achouak W
    PLoS One; 2008 Feb; 3(2):e1539. PubMed ID: 18253487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the proteome of the cadmium-tolerant bacteria Cupriavidus taiwanensis KKU2500-3 in response to cadmium toxicity.
    Siripornadulsil S; Thanwisai L; Siripornadulsil W
    Can J Microbiol; 2014 Mar; 60(3):121-31. PubMed ID: 24588385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanisms of heavy metal cadmium tolerance in plants].
    Zhang J; Shu WS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Feb; 32(1):1-8. PubMed ID: 16477124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinal physiological and transcriptomic analyses reveal the short term and long term response of Synechocystis sp. PCC6803 to cadmium stress.
    Tian Q; Wang J; Cui L; Zeng W; Qiu G; Hu Q; Peng A; Zhang D; Shen L
    Chemosphere; 2022 Sep; 303(Pt 1):134727. PubMed ID: 35513082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress.
    Mitra S; Pramanik K; Ghosh PK; Soren T; Sarkar A; Dey RS; Pandey S; Maiti TK
    Microbiol Res; 2018 May; 210():12-25. PubMed ID: 29625654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of CdS-Tetrahymena thermophila hybrid system by efficient cadmium adsorption for dye removal under light irradiation.
    Tu JW; Li T; Gao ZH; Xiong J; Miao W
    J Hazard Mater; 2022 Oct; 439():129683. PubMed ID: 36104909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Threonine dehydratase enhances bacterial cadmium resistance via driving cysteine desulfuration and biomineralization of cadmium sulfide nanocrystals.
    Ma N; Cai R; Sun C
    J Hazard Mater; 2021 Sep; 417():126102. PubMed ID: 34015711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of an environmental isolate of Rhodotorula mucilaginosa after arsenic and cadmium challenge: Identification of a protein expression signature for heavy metal exposure.
    Ilyas S; Rehman A; Coelho AV; Sheehan D
    J Proteomics; 2016 Jun; 141():47-56. PubMed ID: 27090762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and biomineralization of cadmium sulfide nanoparticles biosynthesized by the bacterium Rhodopseudomonas palustris under light.
    Xing SF; Tian HF; Yan Z; Song C; Wang SG
    J Hazard Mater; 2023 Sep; 458():131937. PubMed ID: 37421856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Enterobacter bugandensis TJ6 immobilization of heavy metals and inhibition of Cd and Pb uptake by wheat based on metabolomics and proteomics.
    Han H; Zhang H; Qin S; Zhang J; Yao L; Chen Z; Yang J
    Chemosphere; 2021 Aug; 276():130157. PubMed ID: 33714158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enterococcus faecalis strain LZ-11 isolated from Lanzhou reach of the Yellow River is able to resist and absorb cadmium.
    Wu G; Sun M; Liu P; Zhang X; Yu Z; Zheng Z; Chen Y; Li X
    J Appl Microbiol; 2014 May; 116(5):1172-80. PubMed ID: 24471702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomics Insights into
    Gallardo-Benavente C; Campo-Giraldo JL; Castro-Severyn J; Quiroz A; Pérez-Donoso JM
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33514061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress.
    Chen Y; Chao Y; Li Y; Lin Q; Bai J; Tang L; Wang S; Ying R; Qiu R
    Appl Environ Microbiol; 2016 Jan; 82(6):1734-1744. PubMed ID: 26729719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms.
    Edwards CD; Beatty JC; Loiselle JB; Vlassov KA; Lefebvre DD
    BMC Microbiol; 2013 Jul; 13():161. PubMed ID: 23855952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.