These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38443349)

  • 1. Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks.
    Jang H; Tong F
    Nat Commun; 2024 Mar; 15(1):1989. PubMed ID: 38443349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks.
    Jang H; Tong F
    bioRxiv; 2023 Jul; ():. PubMed ID: 37577646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional neural networks trained with a developmental sequence of blurry to clear images reveal core differences between face and object processing.
    Jang H; Tong F
    J Vis; 2021 Nov; 21(12):6. PubMed ID: 34767621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human peripheral blur is optimal for object recognition.
    Pramod RT; Katti H; Arun SP
    Vision Res; 2022 Nov; 200():108083. PubMed ID: 35830763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does training with blurred images bring convolutional neural networks closer to humans with respect to robust object recognition and internal representations?
    Yoshihara S; Fukiage T; Nishida S
    Front Psychol; 2023; 14():1047694. PubMed ID: 36874839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training for object recognition with increasing spatial frequency: A comparison of deep learning with human vision.
    Avberšek LK; Zeman A; Op de Beeck H
    J Vis; 2021 Sep; 21(10):14. PubMed ID: 34533580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel feature-scrambling approach reveals the capacity of convolutional neural networks to learn spatial relations.
    Farahat A; Effenberger F; Vinck M
    Neural Netw; 2023 Oct; 167():400-414. PubMed ID: 37673027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks.
    Xu Y; Vaziri-Pashkam M
    J Neurosci; 2021 May; 41(19):4234-4252. PubMed ID: 33789916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do Humans and Deep Convolutional Neural Networks Use Visual Information Similarly for the Categorization of Natural Scenes?
    De Cesarei A; Cavicchi S; Cristadoro G; Lippi M
    Cogn Sci; 2021 Jun; 45(6):e13009. PubMed ID: 34170027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hiding a plane with a pixel: examining shape-bias in CNNs and the benefit of building in biological constraints.
    Malhotra G; Evans BD; Bowers JS
    Vision Res; 2020 Sep; 174():57-68. PubMed ID: 32599343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding transformation tolerant visual object representations in the human brain and convolutional neural networks.
    Xu Y; Vaziri-Pashkam M
    Neuroimage; 2022 Nov; 263():119635. PubMed ID: 36116617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future.
    Lindsay GW
    J Cogn Neurosci; 2021 Sep; 33(10):2017-2031. PubMed ID: 32027584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limits to visual representational correspondence between convolutional neural networks and the human brain.
    Xu Y; Vaziri-Pashkam M
    Nat Commun; 2021 Apr; 12(1):2065. PubMed ID: 33824315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensation for Blur Requires Increase in Field of View and Viewing Time.
    Kwon M; Liu R; Chien L
    PLoS One; 2016; 11(9):e0162711. PubMed ID: 27622710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature blindness: A challenge for understanding and modelling visual object recognition.
    Malhotra G; Dujmović M; Bowers JS
    PLoS Comput Biol; 2022 May; 18(5):e1009572. PubMed ID: 35560155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contextual associations represented both in neural networks and human behavior.
    Aminoff EM; Baror S; Roginek EW; Leeds DD
    Sci Rep; 2022 Apr; 12(1):5570. PubMed ID: 35368046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing Fine Structures of the Retinal Receptive Field by Deep-Learning Networks.
    Yan Q; Zheng Y; Jia S; Zhang Y; Yu Z; Chen F; Tian Y; Huang T; Liu JK
    IEEE Trans Cybern; 2022 Jan; 52(1):39-50. PubMed ID: 32167923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of object identity and configuration to scene representation in convolutional neural networks.
    Tang K; Chin M; Chun M; Xu Y
    PLoS One; 2022; 17(6):e0270667. PubMed ID: 35763531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images.
    Jang H; McCormack D; Tong F
    PLoS Biol; 2021 Dec; 19(12):e3001418. PubMed ID: 34882676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.