These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 38443508)

  • 1. Improved green and red GRAB sensors for monitoring spatiotemporal serotonin release in vivo.
    Deng F; Wan J; Li G; Dong H; Xia X; Wang Y; Li X; Zhuang C; Zheng Y; Liu L; Yan Y; Feng J; Zhao Y; Xie H; Li Y
    Nat Methods; 2024 Apr; 21(4):692-702. PubMed ID: 38443508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetically encoded sensor for measuring serotonin dynamics.
    Wan J; Peng W; Li X; Qian T; Song K; Zeng J; Deng F; Hao S; Feng J; Zhang P; Zhang Y; Zou J; Pan S; Shin M; Venton BJ; Zhu JJ; Jing M; Xu M; Li Y
    Nat Neurosci; 2021 May; 24(5):746-752. PubMed ID: 33821000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring norepinephrine release in vivo using next-generation GRAB
    Feng J; Dong H; Lischinsky JE; Zhou J; Deng F; Zhuang C; Miao X; Wang H; Li G; Cai R; Xie H; Cui G; Lin D; Li Y
    Neuron; 2024 Jun; 112(12):1930-1942.e6. PubMed ID: 38547869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actions of Group I and Group II metabotropic glutamate receptor ligands on 5-hydroxytryptamine release in the rat cerebral cortex in vivo: differential roles in the regulation of central serotonergic neurotransmission.
    Lee JJ; Croucher MJ
    Neuroscience; 2003; 117(3):671-9. PubMed ID: 12617971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved dual-color GRAB sensors for monitoring dopaminergic activity
    Zhuo Y; Luo B; Yi X; Dong H; Wan J; Cai R; Williams JT; Qian T; Campbell MG; Miao X; Li B; Wei Y; Li G; Wang H; Zheng Y; Watabe-Uchida M; Li Y
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved green and red GRAB sensors for monitoring dopaminergic activity in vivo.
    Zhuo Y; Luo B; Yi X; Dong H; Miao X; Wan J; Williams JT; Campbell MG; Cai R; Qian T; Li F; Weber SJ; Wang L; Li B; Wei Y; Li G; Wang H; Zheng Y; Zhao Y; Wolf ME; Zhu Y; Watabe-Uchida M; Li Y
    Nat Methods; 2024 Apr; 21(4):680-691. PubMed ID: 38036855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically encoded sensors for measuring histamine release both in vitro and in vivo.
    Dong H; Li M; Yan Y; Qian T; Lin Y; Ma X; Vischer HF; Liu C; Li G; Wang H; Leurs R; Li Y
    Neuron; 2023 May; 111(10):1564-1576.e6. PubMed ID: 36924772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next generation genetically encoded fluorescent sensors for serotonin.
    Kubitschke M; Müller M; Wallhorn L; Pulin M; Mittag M; Pollok S; Ziebarth T; Bremshey S; Gerdey J; Claussen KC; Renken K; Groß J; Gneiße P; Meyer N; Wiegert JS; Reiner A; Fuhrmann M; Masseck OA
    Nat Commun; 2022 Dec; 13(1):7525. PubMed ID: 36473867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo.
    Sun F; Zhou J; Dai B; Qian T; Zeng J; Li X; Zhuo Y; Zhang Y; Wang Y; Qian C; Tan K; Feng J; Dong H; Lin D; Cui G; Li Y
    Nat Methods; 2020 Nov; 17(11):1156-1166. PubMed ID: 33087905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risperidone-induced inactivation and clozapine-induced reactivation of rat cortical astrocyte 5-hydroxytryptamine₇ receptors: evidence for in situ G protein-coupled receptor homodimer protomer cross-talk.
    Smith C; Toohey N; Knight JA; Klein MT; Teitler M
    Mol Pharmacol; 2011 Feb; 79(2):318-25. PubMed ID: 21062995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G-protein-coupled receptor-based sensors for imaging neurochemicals with high sensitivity and specificity.
    Jing M; Zhang Y; Wang H; Li Y
    J Neurochem; 2019 Nov; 151(3):279-288. PubMed ID: 31419844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice.
    Sun F; Zeng J; Jing M; Zhou J; Feng J; Owen SF; Luo Y; Li F; Wang H; Yamaguchi T; Yong Z; Gao Y; Peng W; Wang L; Zhang S; Du J; Lin D; Xu M; Kreitzer AC; Cui G; Li Y
    Cell; 2018 Jul; 174(2):481-496.e19. PubMed ID: 30007419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of alpha2-adrenergic and serotonin2C receptors: a comparison with citalopram.
    Millan MJ; Gobert A; Rivet JM; Adhumeau-Auclair A; Cussac D; Newman-Tancredi A; Dekeyne A; Nicolas JP; Lejeune F
    Eur J Neurosci; 2000 Mar; 12(3):1079-95. PubMed ID: 10762339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo control of 5-hydroxytryptamine release by terminal autoreceptors in rat brain areas differentially innervated by the dorsal and median raphe nuclei.
    Hervás I; Bel N; Fernández AG; Palacios JM; Artigas F
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Sep; 358(3):315-22. PubMed ID: 9774218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A G protein-coupled receptor (GPCR) in red: live cell imaging of the kappa opioid receptor-tdTomato fusion protein (KOPR-tdT) in neuronal cells.
    Huang P; Chiu YT; Chen C; Wang Y; Liu-Chen LY
    J Pharmacol Toxicol Methods; 2013; 68(3):340-5. PubMed ID: 23856011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors.
    Patriarchi T; Cho JR; Merten K; Howe MW; Marley A; Xiong WH; Folk RW; Broussard GJ; Liang R; Jang MJ; Zhong H; Dombeck D; von Zastrow M; Nimmerjahn A; Gradinaru V; Williams JT; Tian L
    Science; 2018 Jun; 360(6396):. PubMed ID: 29853555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonexocytotic serotonin release tonically suppresses serotonergic neuron activity.
    Mlinar B; Montalbano A; Baccini G; Tatini F; Berlinguer Palmini R; Corradetti R
    J Gen Physiol; 2015 Mar; 145(3):225-51. PubMed ID: 25712017
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Ocana-Santero G; Packer AM; Sharp T; Butt SJB
    ACS Chem Neurosci; 2024 Feb; 15(3):456-461. PubMed ID: 38251903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SB-649915, a novel, potent 5-HT1A and 5-HT1B autoreceptor antagonist and 5-HT re-uptake inhibitor in native tissue.
    Scott C; Soffin EM; Hill M; Atkinson PJ; Langmead CJ; Wren PB; Faedo S; Gordon LJ; Price GW; Bromidge S; Johnson CN; Hagan JJ; Watson J
    Eur J Pharmacol; 2006 Apr; 536(1-2):54-61. PubMed ID: 16571351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.
    Parrish JC; Nichols DE
    J Neurochem; 2006 Nov; 99(4):1164-75. PubMed ID: 17010161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.