These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38443513)
21. A space-time spectral collocation algorithm for the variable order fractional wave equation. Bhrawy AH; Doha EH; Alzaidy JF; Abdelkawy MA Springerplus; 2016; 5(1):1220. PubMed ID: 27536504 [TBL] [Abstract][Full Text] [Related]
22. On delay optimal control problems with a combination of conformable and Caputo-Fabrizio fractional derivatives via a fractional power series neural network. Kheyrinataj F; Nazemi A Network; 2022; 33(1-2):62-94. PubMed ID: 35430928 [TBL] [Abstract][Full Text] [Related]
23. An Efficient Numerical Scheme for Solving a Fractional-Order System of Delay Differential Equations. Kumar M Int J Appl Comput Math; 2022; 8(5):262. PubMed ID: 36185949 [TBL] [Abstract][Full Text] [Related]
24. An innovative fixed-pole numerical approximation for fractional order systems. Wei Y; Tse PW; Du B; Wang Y ISA Trans; 2016 May; 62():94-102. PubMed ID: 26850750 [TBL] [Abstract][Full Text] [Related]
25. Application of a time-fractal fractional derivative with a power-law kernel to the Burke-Shaw system based on Newton's interpolation polynomials. Almutairi N; Saber S MethodsX; 2024 Jun; 12():102510. PubMed ID: 38223217 [TBL] [Abstract][Full Text] [Related]
27. Fredholm boundary-value problem for the system of fractional differential equations. Boichuk O; Feruk V Nonlinear Dyn; 2023; 111(8):7459-7468. PubMed ID: 36687007 [TBL] [Abstract][Full Text] [Related]
28. Heat transfer analysis in a non-Newtonian hybrid nanofluid over an exponentially oscillating plate using fractional Caputo-Fabrizio derivative. Ul Haq S; Mahmood N; Jan SU; Sehra ; Khan I; Mohamed A Sci Rep; 2022 Nov; 12(1):19591. PubMed ID: 36379966 [TBL] [Abstract][Full Text] [Related]
29. On fractional infinite-horizon optimal control problems with a combination of conformable and Caputo-Fabrizio fractional derivatives. Yavari M; Nazemi A ISA Trans; 2020 Jun; 101():78-90. PubMed ID: 32115191 [TBL] [Abstract][Full Text] [Related]
31. The analysis of a time delay fractional COVID-19 model via Caputo type fractional derivative. Kumar P; Suat Erturk V Math Methods Appl Sci; 2020 Oct; ():. PubMed ID: 33230357 [TBL] [Abstract][Full Text] [Related]
32. A new study on two different vaccinated fractional-order COVID-19 models via numerical algorithms. Zeb A; Kumar P; Erturk VS; Sitthiwirattham T J King Saud Univ Sci; 2022 Feb; ():101914. PubMed ID: 35194351 [TBL] [Abstract][Full Text] [Related]
33. A fractional power series neural network for solving a class of fractional optimal control problems with equality and inequality constraints. Ghasemi S; Nazemi A Network; 2019; 30(1-4):148-175. PubMed ID: 31846404 [TBL] [Abstract][Full Text] [Related]
34. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION. Liu F; Meerschaert MM; McGough RJ; Zhuang P; Liu Q Fract Calc Appl Anal; 2013 Mar; 16(1):9-25. PubMed ID: 23772179 [TBL] [Abstract][Full Text] [Related]
35. A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China. Yadav RP; Renu Verma Chaos Solitons Fractals; 2020 Nov; 140():110124. PubMed ID: 32834636 [TBL] [Abstract][Full Text] [Related]
36. Mathematical analysis and numerical simulation for fractal-fractional cancer model. Laksaci N; Boudaoui A; Al-Mekhlafi SM; Atangana A Math Biosci Eng; 2023 Sep; 20(10):18083-18103. PubMed ID: 38052549 [TBL] [Abstract][Full Text] [Related]
38. Computation of solution to fractional order partial reaction diffusion equations. Gul H; Alrabaiah H; Ali S; Shah K; Muhammad S J Adv Res; 2020 Sep; 25():31-38. PubMed ID: 32922971 [TBL] [Abstract][Full Text] [Related]
39. Analytical solution of fuzzy heat problem in two-dimensional case under Caputo-type fractional derivative. Nadeem M; Yilin C; Kumar D; Alsayyad Y PLoS One; 2024; 19(4):e0301719. PubMed ID: 38640130 [TBL] [Abstract][Full Text] [Related]
40. Mathematical modeling and stability analysis of the novel fractional model in the Caputo derivative operator: A case study. Saadeh R; Abdoon MA; Qazza A; Berir M; Guma FE; Al-Kuleab N; Degoot AM Heliyon; 2024 Mar; 10(5):e26611. PubMed ID: 38434353 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]