These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 38443635)
1. Investigation of Antibody Pharmacokinetics in the Brain Following Intra-CNS Administration and Development of PBPK Model to Characterize the Data. Wu S; Chang HY; Chowdhury EA; Huang HW; Shah DK AAPS J; 2024 Mar; 26(2):29. PubMed ID: 38443635 [TBL] [Abstract][Full Text] [Related]
2. PBPK model for antibody disposition in mouse brain: validation using large-pore microdialysis data. Wu S; Le Prieult F; Phipps CJ; Mezler M; Shah DK J Pharmacokinet Pharmacodyn; 2022 Dec; 49(6):579-592. PubMed ID: 36088452 [TBL] [Abstract][Full Text] [Related]
3. Pharmacokinetics of AAV9 Mediated Trastuzumab Expression in Rat Brain Following Systemic and Local Administration. Chowdhury EA; Ahuja M; Wu S; Liu S; Huang HW; Kumar M; Sunkara KS; Ghobrial A; Chandran J; Jamier T; Perkinton M; Meno-Tetang G; Shah DK J Pharm Sci; 2024 Jan; 113(1):131-140. PubMed ID: 37659717 [TBL] [Abstract][Full Text] [Related]
4. Investigating brain uptake of a non-targeting monoclonal antibody after intravenous and intracerebroventricular administration. Van De Vyver AJ; Walz AC; Heins MS; Abdolzade-Bavil A; Kraft TE; Waldhauer I; Otteneder MB Front Pharmacol; 2022; 13():958543. PubMed ID: 36105215 [TBL] [Abstract][Full Text] [Related]
5. Antibody pharmacokinetics in rat brain determined using microdialysis. Chang HY; Morrow K; Bonacquisti E; Zhang W; Shah DK MAbs; 2018; 10(6):843-853. PubMed ID: 29944439 [TBL] [Abstract][Full Text] [Related]
6. A Minimal PBPK Model for Plasma and Cerebrospinal Fluid Pharmacokinetics of Trastuzumab after Intracerebroventricular Administration in Patients with HER2-Positive Brain Metastatic Localizations. Puszkiel A; Bousquet G; Stanke-Labesque F; Stocco J; Decq P; Chevillard L; Goutagny S; Declèves X Pharm Res; 2023 Nov; 40(11):2687-2697. PubMed ID: 37821769 [TBL] [Abstract][Full Text] [Related]
7. Towards a translational physiologically-based pharmacokinetic (PBPK) model for receptor-mediated transcytosis of anti-transferrin receptor monoclonal antibodies in the central nervous system. Chang HY; Wu S; Chowdhury EA; Shah DK J Pharmacokinet Pharmacodyn; 2022 Jun; 49(3):337-362. PubMed ID: 35092540 [TBL] [Abstract][Full Text] [Related]
8. A translational platform PBPK model for antibody disposition in the brain. Chang HY; Wu S; Meno-Tetang G; Shah DK J Pharmacokinet Pharmacodyn; 2019 Aug; 46(4):319-338. PubMed ID: 31115858 [TBL] [Abstract][Full Text] [Related]
9. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. Shah DK; Betts AM J Pharmacokinet Pharmacodyn; 2012 Feb; 39(1):67-86. PubMed ID: 22143261 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic Modeling of Intrathecal Chemotherapy Pharmacokinetics in the Human Central Nervous System. Li J; Wu A; Kim S Clin Cancer Res; 2024 Apr; 30(7):1397-1408. PubMed ID: 38289997 [TBL] [Abstract][Full Text] [Related]
11. Effect of the Size of Protein Therapeutics on Brain Pharmacokinetics Following Systematic Administration. Chang HY; Wu S; Li Y; Guo L; Li Y; Shah DK AAPS J; 2022 May; 24(3):62. PubMed ID: 35501500 [TBL] [Abstract][Full Text] [Related]
14. Revisiting Cerebrospinal Fluid Flow Direction and Rate in Physiologically Based Pharmacokinetic Model. Hirasawa M; de Lange ECM Pharmaceutics; 2022 Aug; 14(9):. PubMed ID: 36145511 [TBL] [Abstract][Full Text] [Related]
15. Minimal brain PBPK model to support the preclinical and clinical development of antibody therapeutics for CNS diseases. Bloomingdale P; Bakshi S; Maass C; van Maanen E; Pichardo-Almarza C; Yadav DB; van der Graaf P; Mehrotra N J Pharmacokinet Pharmacodyn; 2021 Dec; 48(6):861-871. PubMed ID: 34378151 [TBL] [Abstract][Full Text] [Related]
16. Lumbar cerebrospinal fluid-to-brain extracellular fluid surrogacy is context-specific: insights from LeiCNS-PK3.0 simulations. Saleh MAA; Loo CF; Elassaiss-Schaap J; De Lange ECM J Pharmacokinet Pharmacodyn; 2021 Oct; 48(5):725-741. PubMed ID: 34142308 [TBL] [Abstract][Full Text] [Related]
17. Microdialysis: the Key to Physiologically Based Model Prediction of Human CNS Target Site Concentrations. Yamamoto Y; Danhof M; de Lange ECM AAPS J; 2017 Jul; 19(4):891-909. PubMed ID: 28281195 [TBL] [Abstract][Full Text] [Related]
18. PBPK model of methotrexate in cerebrospinal fluid ventricles using a combined microdialysis and MRI acquisition. Brandhonneur N; Noury F; Bruyère A; Saint-Jalmes H; Le Corre P Eur J Pharm Biopharm; 2016 Jul; 104():117-30. PubMed ID: 27142258 [TBL] [Abstract][Full Text] [Related]
19. A physiologically-based pharmacokinetic model to describe antisense oligonucleotide distribution after intrathecal administration. Monine M; Norris D; Wang Y; Nestorov I J Pharmacokinet Pharmacodyn; 2021 Oct; 48(5):639-654. PubMed ID: 33991294 [TBL] [Abstract][Full Text] [Related]
20. Impact of chemical modification of sulfamidase on distribution to brain interstitial fluid and to CSF after an intravenous administration in awake, freely-moving rats. Janson J; Andersson G; Bergquist L; Eriksson M; Folgering JHA Mol Genet Metab Rep; 2020 Mar; 22():100554. PubMed ID: 31908953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]