These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38444296)
41. Aqueous-Based Inorganic Colloidal Halide Perovskites Customizing Liquid Scintillators. Lian H; Zhang W; Zou R; Gu S; Kuang R; Zhu Y; Zhang X; Ma CG; Wang J; Li Y Adv Mater; 2023 Dec; 35(51):e2304743. PubMed ID: 37722107 [TBL] [Abstract][Full Text] [Related]
42. A real-time method to simultaneously measure linear energy transfer and dose for proton therapy using organic scintillators. Alsanea F; Therriault-Proulx F; Sawakuchi G; Beddar S Med Phys; 2018 Apr; 45(4):1782-1789. PubMed ID: 29446078 [TBL] [Abstract][Full Text] [Related]
43. Perovskite Scintillators for Improved X-ray Detection and Imaging. Wang Y; Li M; Chai Z; Wang Y; Wang S Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202304638. PubMed ID: 37258939 [TBL] [Abstract][Full Text] [Related]
44. Photonic-Crystal Scintillators: Molding the Flow of Light to Enhance X-Ray and γ-Ray Detection. Kurman Y; Shultzman A; Segal O; Pick A; Kaminer I Phys Rev Lett; 2020 Jul; 125(4):040801. PubMed ID: 32794818 [TBL] [Abstract][Full Text] [Related]
45. Gd-containing scintillators for thermal neutron detection via graph-based particle discrimination. Wang CL Rev Sci Instrum; 2021 Oct; 92(10):103304. PubMed ID: 34717424 [TBL] [Abstract][Full Text] [Related]
46. Computational modeling for the evaluation of suppressed scintillation yields in plastic scintillators using Geant4. Kikuta S; Sakata D; Fukuda S Phys Med; 2021 Sep; 89():258-264. PubMed ID: 34464937 [TBL] [Abstract][Full Text] [Related]
47. Experimental comparison of high-density scintillators for EMCCD-based gamma ray imaging. Heemskerk JW; Kreuger R; Goorden MC; Korevaar MA; Salvador S; Seeley ZM; Cherepy NJ; van der Kolk E; Payne SA; Dorenbos P; Beekman FJ Phys Med Biol; 2012 Jul; 57(14):4545-54. PubMed ID: 22722678 [TBL] [Abstract][Full Text] [Related]
48. Optical properties and pulse shape discrimination in siloxane-based scintillation detectors. Marchi T; Pino F; Fontana CL; Quaranta A; Zanazzi E; Vesco M; Cinausero M; Daldosso N; Paterlini V; Gramegna F; Moretto S; Collazuol G; Degerlier M; Fabris D; Carturan SM Sci Rep; 2019 Jun; 9(1):9154. PubMed ID: 31235878 [TBL] [Abstract][Full Text] [Related]
49. A method to calibrate the n-γ discrimination property of scintillators in low energy region. Bai H; Zhang G; Xiong Z; Li Y; Zhao D; Su M; Mo Z; Wang X; Gao F; Zhang H; Zhang Z; Wen J Appl Radiat Isot; 2021 Jan; 167():109447. PubMed ID: 33049654 [TBL] [Abstract][Full Text] [Related]
50. Experimental examination of a method to estimate temporal effect by neutrons and γ-rays on scintillation light in scintillator-based soft x-ray diagnostic of experimental advanced superconducting tokamak and large helical device. Bando T; Ohdachi S; Zhou RJ; Zhong GQ; Yuan Y; Hu LQ; Ling BL Rev Sci Instrum; 2019 Jan; 90(1):013507. PubMed ID: 30709180 [TBL] [Abstract][Full Text] [Related]
51. Metal Halide Perovskite Nanosheet for X-ray High-Resolution Scintillation Imaging Screens. Zhang Y; Sun R; Ou X; Fu K; Chen Q; Ding Y; Xu LJ; Liu L; Han Y; Malko AV; Liu X; Yang H; Bakr OM; Liu H; Mohammed OF ACS Nano; 2019 Feb; 13(2):2520-2525. PubMed ID: 30721023 [TBL] [Abstract][Full Text] [Related]
52. Investigating the Potential of Perovskite Nanocrystal-Doped Liquid Scintillator: A Feasibility Study. Kim NR; Joo KK; Lee HG Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067863 [TBL] [Abstract][Full Text] [Related]
53. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Ma W; Su Y; Zhang Q; Deng C; Pasquali L; Zhu W; Tian Y; Ran P; Chen Z; Yang G; Liang G; Liu T; Zhu H; Huang P; Zhong H; Wang K; Peng S; Xia J; Liu H; Liu X; Yang YM Nat Mater; 2022 Feb; 21(2):210-216. PubMed ID: 34764429 [TBL] [Abstract][Full Text] [Related]
54. Overcoming Thermal Quenching in X-ray Scintillators through Multi-Excited State Switching. Wang M; Zhang Z; Lyu J; Qiu J; Gu C; Zhao H; Wang T; Ren Y; Yang SW; Qin Xu G; Liu X Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202401949. PubMed ID: 38437064 [TBL] [Abstract][Full Text] [Related]
55. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators. Cho S; Kim S; Kim J; Jo Y; Ryu I; Hong S; Lee JJ; Cha S; Nam EB; Lee SU; Noh SK; Kim H; Kwak J; Im H Light Sci Appl; 2020; 9():156. PubMed ID: 32963768 [TBL] [Abstract][Full Text] [Related]
56. Bulk Organic-Inorganic Methylammonium Lead Halide Perovskite Single Crystals for Indirect Gamma Ray Detection. Xu Q; Shao W; Liu J; Zhu Z; Ouyang X; Cai J; Liu B; Liang B; Wu Z; Ouyang X ACS Appl Mater Interfaces; 2019 Dec; 11(50):47485-47490. PubMed ID: 31741374 [TBL] [Abstract][Full Text] [Related]
57. High-throughput production of LuAG-based highly luminescent thick film scintillators for radiation detection and imaging. Matsumoto S; Ito A Sci Rep; 2022 Nov; 12(1):19319. PubMed ID: 36369313 [TBL] [Abstract][Full Text] [Related]
58. First-principles study of lithium aluminosilicate glass scintillators. Ghardi EM; Scrimshire A; Smith R; Bingham PA; Middleburgh SC; Lee WE; Rushton MJD Phys Chem Chem Phys; 2024 Feb; 26(7):6138-6147. PubMed ID: 38299662 [TBL] [Abstract][Full Text] [Related]
59. Thick beryllium target as an epithermal neutron source for neutron capture therapy. Wang CK; Moore BR Med Phys; 1994 Oct; 21(10):1633-8. PubMed ID: 7869996 [TBL] [Abstract][Full Text] [Related]