These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38444300)

  • 1. Dynamics of self-propelled particles in vibrated dense granular media.
    Son K; Choe Y; Kwon E; Rigon LG; Baek Y; Kim HY
    Soft Matter; 2024 Mar; 20(12):2777-2788. PubMed ID: 38444300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can playing Spirograph lead to an ordered structure in self-propelled particles?
    Alamcheril MP; Jain U; Babu SB
    Soft Matter; 2021 Oct; 17(41):9507-9513. PubMed ID: 34617553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective vortical motion and vorticity reversals of self-propelled particles on circularly patterned substrates.
    Wen H; Zhu Y; Peng C; Kumar PBS; Laradji M
    Phys Rev E; 2023 Feb; 107(2-1):024606. PubMed ID: 36932499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cages and anomalous diffusion in vibrated dense granular media.
    Scalliet C; Gnoli A; Puglisi A; Vulpiani A
    Phys Rev Lett; 2015 May; 114(19):198001. PubMed ID: 26024199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transitions in the horizontal transport of vertically vibrated granular layers.
    Farkas Z; Tegzes P; Vukics A; Vicsek T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7022-31. PubMed ID: 11970641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise and diffusion of a vibrated self-propelled granular particle.
    Walsh L; Wagner CG; Schlossberg S; Olson C; Baskaran A; Menon N
    Soft Matter; 2017 Dec; 13(47):8964-8968. PubMed ID: 29152630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dilatancy, buckling, and undulations on a vertically vibrating granular layer.
    Sano O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051302. PubMed ID: 16383598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target search kinetics of self-propelled particles in a confining domain.
    Wang J; Chen Y; Yu W; Luo K
    J Chem Phys; 2016 May; 144(20):204702. PubMed ID: 27250320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubbling in vibrated granular films.
    Zamankhan P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021306. PubMed ID: 21405842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex self-propelled rings: a minimal model for cell motility.
    Abaurrea Velasco C; Dehghani Ghahnaviyeh S; Nejat Pishkenari H; Auth T; Gompper G
    Soft Matter; 2017 Sep; 13(35):5865-5876. PubMed ID: 28766641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Dynamics of Self-propelled Particles Moving Through Obstacles: Model Derivation and Pattern Formation.
    Aceves-Sanchez P; Degond P; Keaveny EE; Manhart A; Merino-Aceituno S; Peurichard D
    Bull Math Biol; 2020 Sep; 82(10):129. PubMed ID: 32978682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-coexisting patterns, horizontal segregation, and controlled convection in vertically vibrated binary granular mixtures.
    Ansari IH; Rivas N; Alam M
    Phys Rev E; 2018 Jan; 97(1-1):012911. PubMed ID: 29448482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluidization of a vertically vibrated two-dimensional hard sphere packing: a granular meltdown.
    Götzendorfer A; Tai CH; Kruelle CA; Rehberg I; Hsiau SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011304. PubMed ID: 16907086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial heterogeneity can facilitate the target search of self-propelled particles.
    Wang J; Zhang D; Xia B; Yu W
    Soft Matter; 2017 Jan; 13(4):758-764. PubMed ID: 28045160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of vibrated granular chains: comparison to equilibrium polymers.
    Safford K; Kantor Y; Kardar M; Kudrolli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061304. PubMed ID: 19658498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial effects on rectification and diffusion of active Brownian particles in an asymmetric channel.
    Khatri N; Kapral R
    J Chem Phys; 2023 Mar; 158(12):124903. PubMed ID: 37003720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial and geometrical effects of self-propelled elliptical Brownian particles.
    Montana F; Camporeale C; Porporato A; Rondoni L
    Phys Rev E; 2023 May; 107(5-1):054607. PubMed ID: 37328983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speed inhomogeneity accelerates information transfer in polar flock.
    Pattanayak S; Singh JP; Kumar M; Mishra S
    Phys Rev E; 2020 May; 101(5-1):052602. PubMed ID: 32575321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swarming and swirling in self-propelled polar granular rods.
    Kudrolli A; Lumay G; Volfson D; Tsimring LS
    Phys Rev Lett; 2008 Feb; 100(5):058001. PubMed ID: 18352433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.