These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38444319)

  • 1. Low-temperature dissociation of CO
    Koitaya T; Shiozawa Y; Yoshikura Y; Mukai K; Yoshimoto S; Yoshinobu J
    Phys Chem Chem Phys; 2024 Mar; 26(12):9226-9233. PubMed ID: 38444319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of Fano line shapes in infrared vibrational spectra of CO2 adsorbed on Cu(997) and Cu(111).
    Koitaya T; Shiozawa Y; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2016 Feb; 144(5):054703. PubMed ID: 26851930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing CO
    Kim J; Yu Y; Go TW; Gallet JJ; Bournel F; Mun BS; Park JY
    Nat Commun; 2023 Jun; 14(1):3273. PubMed ID: 37280205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formic acid adsorption and decomposition on clean and atomic oxygen pre-covered Cu(100) surfaces.
    Li G; Guo W; Zhou X; Yu X; Zhu J
    J Chem Phys; 2020 Mar; 152(11):114703. PubMed ID: 32199429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of step-site and zinc in surface chemistry of formic acid on clean and Zn-modified Cu(111) and Cu(997) surfaces studied by HR-XPS, TPD, and IRAS.
    Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2020 Jan; 152(4):044703. PubMed ID: 32007070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of CO2 and coadsorption of H and CO2 on potassium-promoted Cu(115).
    Onsgaard J; Hoffmann SV; Møller P; Godowski PJ; Wagner JB; Paolucci G; Baraldi A; Comelli G; Groso A
    Chemphyschem; 2003 Apr; 4(5):466-73. PubMed ID: 12785260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociative Carbon Dioxide Adsorption and Morphological Changes on Cu(100) and Cu(111) at Ambient Pressures.
    Eren B; Weatherup RS; Liakakos N; Somorjai GA; Salmeron M
    J Am Chem Soc; 2016 Jul; 138(26):8207-11. PubMed ID: 27280375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing the Role of CO during CO
    Swallow JEN; Jones ES; Head AR; Gibson JS; David RB; Fraser MW; van Spronsen MA; Xu S; Held G; Eren B; Weatherup RS
    J Am Chem Soc; 2023 Mar; 145(12):6730-6740. PubMed ID: 36916242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-Scale Visualization of Heterolytic H
    Ling Y; Luo J; Ran Y; Liu Z; Li WX; Yang F
    J Am Chem Soc; 2023 Oct; 145(41):22697-22707. PubMed ID: 37801691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoting effect of tungsten carbide on the catalytic activity of Cu for CO
    Koverga AA; Flórez E; Dorkis L; Rodriguez JA
    Phys Chem Chem Phys; 2020 Jun; 22(24):13666-13679. PubMed ID: 32520058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Reaction Mechanism in CO
    Ren Y; Xin C; Hao Z; Sun H; Bernasek SL; Chen W; Xu GQ
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2548-2554. PubMed ID: 31850736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology and chemical behavior of model CsO
    Hamlyn R; Mahapatra M; Orozco I; Hunt A; Waluyo I; White MG; Senanayake SD; Rodriguez J
    J Chem Phys; 2020 Jan; 152(4):044701. PubMed ID: 32007043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO-NO and CO-O(2) interactions on Cu(100) between 25 and 200 K studied with infrared reflection absorption spectroscopy.
    Kim CM; Yi CW; Goodman DW
    J Phys Chem B; 2005 Feb; 109(5):1891-5. PubMed ID: 16851171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogenation of Formate Species Using Atomic Hydrogen on a Cu(111) Model Catalyst.
    Takeyasu K; Sawaki Y; Imabayashi T; Putra SEM; Halim HH; Quan J; Hamamoto Y; Hamada I; Morikawa Y; Kondo T; Fujitani T; Nakamura J
    J Am Chem Soc; 2022 Jul; 144(27):12158-12166. PubMed ID: 35762507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Intermediates of CO
    Ren Y; Yuan K; Zhou X; Sun H; Wu K; Bernasek SL; Chen W; Xu GQ
    Chemistry; 2018 Oct; 24(60):16097-16103. PubMed ID: 30088685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociative adsorption of CO2 on flat, stepped, and kinked Cu surfaces.
    Muttaqien F; Hamamoto Y; Inagaki K; Morikawa Y
    J Chem Phys; 2014 Jul; 141(3):034702. PubMed ID: 25053329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic Orientation Dependence of Surface Segregation and Alloying on PdCu Catalysts for CO
    Pielsticker L; Zegkinoglou I; Han ZK; Navarro JJ; Kunze S; Karslıoğlu O; Levchenko SV; Roldan Cuenya B
    J Phys Chem Lett; 2021 Mar; 12(10):2570-2575. PubMed ID: 33686857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of CO
    Heine C; Lechner BA; Bluhm H; Salmeron M
    J Am Chem Soc; 2016 Oct; 138(40):13246-13252. PubMed ID: 27599672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RAIRS Characterization of CO and O Coadsorption on Cu(111).
    Zhang D; Jansen C; Berg OT; Bakker JM; Meyer J; Kleyn AW; Juurlink LBF
    J Phys Chem C Nanomater Interfaces; 2022 Aug; 126(31):13114-13121. PubMed ID: 35983315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction pathways of 2-iodoacetic acid on Cu(100): coverage-dependent competition between C-I bond scission and COOH deprotonation and identification of surface intermediates.
    Lin YS; Lin JS; Liao YH; Yang CM; Kuo CW; Lin HP; Fan LJ; Yang YW; Lin JL
    Langmuir; 2010 Jun; 26(11):8218-25. PubMed ID: 20356026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.