These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38444474)

  • 1. Melt blending of poly(lactic acid) with biomedically relevant polyurethanes to improve mechanical performance.
    Oschatz S; Schultz S; Fiedler N; Senz V; Schmitz KP; Grabow N; Koper D
    Heliyon; 2024 Mar; 10(5):e26268. PubMed ID: 38444474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal, Morphological, Mechanical, and Biodegradation Properties of Poly(L-lactide)-
    Baimark Y; Srihanam P; Srisuwan Y
    Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of antibacterial poly (L-lactic acid)/tea polyphenol blend films via reactive blending using SG copolymer.
    Ni W; Zhou G; Chen Y; Li X; Yan T; Li Y
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130130. PubMed ID: 38354921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal, morphological and mechanical properties of flexible poly(l-lactide)-b-polyethylene glycol-b-poly(l-lactide)/thermoplastic starch blends.
    Srisuwan Y; Baimark Y
    Carbohydr Polym; 2022 May; 283():119155. PubMed ID: 35153027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of biodegradable PLA polymeric blends.
    Chen CC; Chueh JY; Tseng H; Huang HM; Lee SY
    Biomaterials; 2003 Mar; 24(7):1167-73. PubMed ID: 12527257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated hydrolytic degradation of poly(l-lactide) by blending with poly(ether-block-amide).
    Cui J; Chen Z; Lin Y
    Int J Biol Macromol; 2024 Oct; 278(Pt 4):135053. PubMed ID: 39187101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pins composed of poly(L-lactic acid)/poly(3- hydroxybutyrate-co-hydroxyvalerate) PLLA/PHBV blends: Degradation in vitro.
    Ferreira BM; Duek EA
    J Appl Biomater Biomech; 2005; 3(1):50-60. PubMed ID: 20799240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement in Phase Compatibility and Mechanical Properties of Poly(L-lactide)-
    Srihanam P; Srisuwan Y; Phromsopha T; Manphae A; Baimark Y
    Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of PCL and PHBV on PLLA Thermal and Mechanical Properties in Binary and Ternary Polymer Blends.
    Naseem R; Montalbano G; German MJ; Ferreira AM; Gentile P; Dalgarno K
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of blending poly (l-lactic acid) on in vivo performance of 3D-printed poly(l-lactide-co-caprolactone)/PLLA scaffolds.
    Duan R; Wang Y; Su D; Wang Z; Zhang Y; Du B; Liu L; Li X; Zhang Q
    Biomater Adv; 2022 Jul; 138():212948. PubMed ID: 35913240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blending with Poly(l-lactic acid) Improves the Printability of Poly(l-lactide-
    Duan R; Wang Y; Zhang Y; Wang Z; Du F; Du B; Su D; Liu L; Li X; Zhang Q
    ACS Omega; 2021 Jul; 6(28):18300-18313. PubMed ID: 34308061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization, rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)-poly(ε-caprolactone-
    Jing Z; Li J; Xiao W; Xu H; Hong P; Li Y
    RSC Adv; 2019 Aug; 9(45):26067-26079. PubMed ID: 35531016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Morphology and Mechanical Properties of Super-Tough PLLA/TPE/EMA-GMA Ternary Blends.
    Boruvka M; Base R; Novak J; Brdlik P; Behalek L; Ngaowthong C
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38256991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renewable and Tough Poly(l-lactic acid)/Polyurethane Blends Prepared by Dynamic Vulcanization.
    Fenni SE; Bertella F; Monticelli O; Müller AJ; Hadadoui N; Cavallo D
    ACS Omega; 2020 Oct; 5(41):26421-26430. PubMed ID: 33110970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ reactive compatiblization modified poly(l-lactic acid) and poly (butylene adipate-co-terephthalate) blends with improved toughening and thermal characteristics.
    Wen J; Yi L; Su J; Han J
    Int J Biol Macromol; 2023 Mar; 231():123419. PubMed ID: 36709812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films.
    Tsuji H
    Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends.
    Park HS; Hong CK
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Ethylene/butyl methacrylate/Glycidyl Methacrylate Terpolymer on toughness and biodegradation of poly (l-lactic acid).
    Jia S; Chen Y; Yu Y; Han L; Zhang H; Dong L
    Int J Biol Macromol; 2019 Apr; 127():415-424. PubMed ID: 30659879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of blending sequences and molecular structures of the compatibilizers on the morphology and properties of PLLA/ABS blends.
    Cao X; Dong W; He M; Zhang J; Ren F; Li Y
    RSC Adv; 2019 Jan; 9(4):2189-2198. PubMed ID: 35516126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.