These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38445621)

  • 1. Dielectric Liquid Microlens Array with Tunable Focal Length Based on Microdroplet Array Created via Dip-Coating Method.
    Xu M; Chen C; Chang X; Chen Q; Lu H
    Langmuir; 2024 Mar; 40(11):5809-5817. PubMed ID: 38445621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vari-focal liquid microlens array using an electrically responsive fluid actuated by a ring array patterned electrode.
    Xu M; Liu Y; Li S; Li J; Zhang L; Lu H
    Appl Opt; 2022 Nov; 61(33):9781-9787. PubMed ID: 36606806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Microlens Array with Controllable Focal Length Formed on a Selective Wetting Surface.
    Xu M; Zhou Z; Wang Z; Lu H
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7826-7832. PubMed ID: 31944645
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Zhong Y; Yu H; Zhou P; Wen Y; Zhao W; Zou W; Luo H; Wang Y; Liu L
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39550-39560. PubMed ID: 34378373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication.
    Clement CE; Jiang D; Thio SK; Park SY
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of uniform-aperture multi-focus microlens array by curving microfluid in the microholes with inclined walls.
    Long Y; Song Z; Pan M; Tao C; Hong R; Dai B; Zhang D
    Opt Express; 2021 Apr; 29(8):12763-12771. PubMed ID: 33985026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Rapid Fabrication Method of Large-Area MLAs with Variable Curvature for Retroreflectors Based on Thermal Reflow.
    Yong Y; Chen S; Chen H; Ge H; Hao Z
    Micromachines (Basel); 2024 Jun; 15(7):. PubMed ID: 39064327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable-focus liquid microlens array using dielectrophoretic effect.
    Ren H; Wu ST
    Opt Express; 2008 Feb; 16(4):2646-52. PubMed ID: 18542348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of polymer microlens array with controllable focal length by modifying surface wettability.
    Xu Q; Dai B; Huang Y; Wang H; Yang Z; Wang K; Zhuang S; Zhang D
    Opt Express; 2018 Feb; 26(4):4172-4182. PubMed ID: 29475269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Electrowetting-on-Dielectric Microlens Array Sheet.
    Van Grinsven KL; Ousati Ashtiani A; Jiang H
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31373304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization-insensitive tunable multifocal liquid crystal microlens array with dual lens modes.
    Antony M; Nawaz R; Wang YW; Hsu CJ; Huang CY
    Opt Express; 2023 Dec; 31(25):41117-41128. PubMed ID: 38087519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of a Microlens Array with Controlled Curvature by Thermally Curving Photosensitive Gel Film beneath Microholes.
    Zhang D; Xu Q; Fang C; Wang K; Wang X; Zhuang S; Dai B
    ACS Appl Mater Interfaces; 2017 May; 9(19):16604-16609. PubMed ID: 28452461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric-elastomer-based fabrication method for varifocal microlens array.
    Wang L; Hayakawa T; Ishikawa M
    Opt Express; 2017 Dec; 25(25):31708-31717. PubMed ID: 29245842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning Hydrophobic Surfaces by Negative Microcontact Printing and Its Applications.
    Wu H; Wu L; Zhou X; Liu B; Zheng B
    Small; 2018 Sep; 14(38):e1802128. PubMed ID: 30133159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab.
    Zhao X; Liu C; Zhang D; Luo Y
    Appl Opt; 2012 May; 51(15):3024-30. PubMed ID: 22614606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive liquid crystal microlens array enabled by two-photon polymerization.
    He Z; Lee YH; Chanda D; Wu ST
    Opt Express; 2018 Aug; 26(16):21184-21193. PubMed ID: 30119422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method.
    Kuo SM; Lin CH
    Opt Express; 2010 Aug; 18(18):19114-9. PubMed ID: 20940806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method for fabricating high density and large aperture ratio liquid microlens array.
    Ren H; Ren D; Wu ST
    Opt Express; 2009 Dec; 17(26):24183-8. PubMed ID: 20052129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymeric microlens array formed on a discontinuous wetting surface using a self-assembly technique.
    Xu M; Bian Z; Chen Q; Wang H; Chen C; Lu H
    Appl Opt; 2024 Jun; 63(16):4380-4385. PubMed ID: 38856617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and fabrication of an electrohydrodynamically actuated microlens with areal density modulated electrodes.
    Ashtiani AO; Jiang H
    J Micromech Microeng; 2016 Jan; 26(1):. PubMed ID: 32773966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.