These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38445729)

  • 1. Emerging experimental methods to study the thermodynamics of biomolecular condensate formation.
    Ray S; Buell AK
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38445729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics for multiscale studies of biomolecular condensates.
    Erkamp NA; Qi R; Welsh TJ; Knowles TPJ
    Lab Chip; 2022 Dec; 23(1):9-24. PubMed ID: 36269080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating biomolecular condensates: a novel approach to drug discovery.
    Mitrea DM; Mittasch M; Gomes BF; Klein IA; Murcko MA
    Nat Rev Drug Discov; 2022 Nov; 21(11):841-862. PubMed ID: 35974095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain.
    Mukherjee S; Schäfer LV
    Nat Commun; 2023 Sep; 14(1):5892. PubMed ID: 37735186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evolutionarily nascent architecture underlying the formation and emergence of biomolecular condensates.
    Jaberi-Lashkari N; Lee B; Aryan F; Calo E
    Cell Rep; 2023 Aug; 42(8):112955. PubMed ID: 37586369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface tension measurement and calculation of model biomolecular condensates.
    Holland J; Castrejón-Pita AA; Tuinier R; Aarts DGAL; Nott TJ
    Soft Matter; 2023 Nov; 19(45):8706-8716. PubMed ID: 37791635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining Thermodynamic and Material Properties of Biomolecular Condensates by Confocal Microscopy and Optical Tweezers.
    Ghosh A; Kota D; Zhou HX
    Methods Mol Biol; 2023; 2563():237-260. PubMed ID: 36227477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible Kinetic Trapping of FUS Biomolecular Condensates.
    Chatterjee S; Kan Y; Brzezinski M; Koynov K; Regy RM; Murthy AC; Burke KA; Michels JJ; Mittal J; Fawzi NL; Parekh SH
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104247. PubMed ID: 34862761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease.
    Otis JP; Mowry KL
    Wiley Interdiscip Rev RNA; 2023; 14(6):e1807. PubMed ID: 37393916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A platform to induce and mature biomolecular condensates using chemicals and light.
    Hernandez-Candia CN; Brady BR; Harrison E; Tucker CL
    Nat Chem Biol; 2024 Apr; 20(4):452-462. PubMed ID: 38191942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates.
    Guo G; Wang X; Zhang Y; Li T
    Acta Biochim Biophys Sin (Shanghai); 2023 Jul; 55(7):1119-1132. PubMed ID: 37464880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Considerations for the Evaluation of Viral Biomolecular Condensates.
    Roden CA; Gladfelter AS
    Annu Rev Virol; 2024 Sep; 11(1):105-124. PubMed ID: 39326881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the Martini 3 Force Field Reveals the Effects of the Intricate Balance between Protein-Water Interaction Strength and Salt Concentration on Biomolecular Condensate Formation.
    Zerze GH
    J Chem Theory Comput; 2024 Feb; 20(4):1646-1655. PubMed ID: 37043540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomolecular condensates regulate cellular electrochemical equilibria.
    Dai Y; Zhou Z; Yu W; Ma Y; Kim K; Rivera N; Mohammed J; Lantelme E; Hsu-Kim H; Chilkoti A; You L
    Cell; 2024 Oct; 187(21):5951-5966.e18. PubMed ID: 39260373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Condensate Atlas from predictive models of heteromolecular condensate composition.
    Saar KL; Scrutton RM; Bloznelyte K; Morgunov AS; Good LL; Lee AA; Teichmann SA; Knowles TPJ
    Nat Commun; 2024 Jul; 15(1):5418. PubMed ID: 38987300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental Aspects of Phase-Separated Biomolecular Condensates.
    Zhou HX; Kota D; Qin S; Prasad R
    Chem Rev; 2024 Jul; 124(13):8550-8595. PubMed ID: 38885177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taylor Dispersion-Induced Phase Separation for the Efficient Characterisation of Protein Condensate Formation.
    Norrild RK; Mason TO; Boyens-Thiele L; Ray S; Mortensen JB; Fritsch AW; Iglesias-Artola JM; Klausen LK; Stender EGP; Jensen H; Buell AK
    Angew Chem Int Ed Engl; 2024 Jun; 63(25):e202404018. PubMed ID: 38593269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response.
    Morishita K; Watanabe K; Naguro I; Ichijo H
    Cell Rep; 2023 Apr; 42(4):112315. PubMed ID: 37019112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.