These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38445796)
1. CALMODULIN-LIKE16 and PIN-LIKES7a cooperatively regulate rice seedling primary root elongation under chilling. Liu S; Zheng Y; Zhao L; Gulam M; Ullah A; Xie G Plant Physiol; 2024 May; 195(2):1660-1680. PubMed ID: 38445796 [TBL] [Abstract][Full Text] [Related]
2. The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development. Qin H; Zhang Z; Wang J; Chen X; Wei P; Huang R PLoS Genet; 2017 Aug; 13(8):e1006955. PubMed ID: 28829777 [TBL] [Abstract][Full Text] [Related]
3. Rice Inositol Polyphosphate Kinase (OsIPK2) Directly Interacts with OsIAA11 to Regulate Lateral Root Formation. Chen Y; Yang Q; Sang S; Wei Z; Wang P Plant Cell Physiol; 2017 Nov; 58(11):1891-1900. PubMed ID: 29016933 [TBL] [Abstract][Full Text] [Related]
4. Zinc Oxide Nanoparticles Alleviate Chilling Stress in Rice ( Song Y; Jiang M; Zhang H; Li R Molecules; 2021 Apr; 26(8):. PubMed ID: 33920363 [TBL] [Abstract][Full Text] [Related]
5. Mutation of Wang H; Ouyang Q; Yang C; Zhang Z; Hou D; Liu H; Xu H Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012245 [TBL] [Abstract][Full Text] [Related]
6. Specific roles of Os4BGlu10, Os6BGlu24, and Os9BGlu33 in seed germination, root elongation, and drought tolerance in rice. Ren R; Li D; Zhen C; Chen D; Chen X Planta; 2019 Jun; 249(6):1851-1861. PubMed ID: 30848355 [TBL] [Abstract][Full Text] [Related]
7. E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein. Chen H; Ma B; Zhou Y; He SJ; Tang SY; Lu X; Xie Q; Chen SY; Zhang JS Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4513-4518. PubMed ID: 29632179 [TBL] [Abstract][Full Text] [Related]
8. A zinc finger protein, interacted with cyclophilin, affects root development via IAA pathway in rice. Cui P; Liu H; Ruan S; Ali B; Gill RA; Ma H; Zheng Z; Zhou W J Integr Plant Biol; 2017 Jul; 59(7):496-505. PubMed ID: 28267270 [TBL] [Abstract][Full Text] [Related]
9. The CaM1-associated CCaMK-MKK1/6 cascade positively affects lateral root growth via auxin signaling under salt stress in rice. Yang J; Ji L; Liu S; Jing P; Hu J; Jin D; Wang L; Xie G J Exp Bot; 2021 Sep; 72(18):6611-6627. PubMed ID: 34129028 [TBL] [Abstract][Full Text] [Related]
10. The WUSCHEL-related homeobox transcription factor OsWOX4 controls the primary root elongation by activating OsAUX1 in rice. Chen R; Xu N; Yu B; Wu Q; Li X; Wang G; Huang J Plant Sci; 2020 Sep; 298():110575. PubMed ID: 32771139 [TBL] [Abstract][Full Text] [Related]
11. The Interaction between Rice ERF3 and WOX11 Promotes Crown Root Development by Regulating Gene Expression Involved in Cytokinin Signaling. Zhao Y; Cheng S; Song Y; Huang Y; Zhou S; Liu X; Zhou DX Plant Cell; 2015 Sep; 27(9):2469-83. PubMed ID: 26307379 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Jung H; Chung PJ; Park SH; Redillas MCFR; Kim YS; Suh JW; Kim JK Plant Biotechnol J; 2017 Oct; 15(10):1295-1308. PubMed ID: 28244201 [TBL] [Abstract][Full Text] [Related]
13. OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism. Xiao G; Qin H; Zhou J; Quan R; Lu X; Huang R; Zhang H Plant Mol Biol; 2016 Feb; 90(3):293-302. PubMed ID: 26659593 [TBL] [Abstract][Full Text] [Related]
14. OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice. Kitomi Y; Inahashi H; Takehisa H; Sato Y; Inukai Y Plant Sci; 2012 Jul; 190():116-22. PubMed ID: 22608525 [TBL] [Abstract][Full Text] [Related]
15. Defects in root development and gravity response in the aem1 mutant of rice are associated with reduced auxin efflux. Debi BR; Chhun T; Taketa S; Tsurumi S; Xia K; Miyao A; Hirochika H; Ichii M J Plant Physiol; 2005 Jun; 162(6):678-85. PubMed ID: 16008090 [TBL] [Abstract][Full Text] [Related]
16. Identification of a putative voltage-gated Ca2+ -permeable channel (OsTPC1) involved in Ca2+ influx and regulation of growth and development in rice. Kurusu T; Sakurai Y; Miyao A; Hirochika H; Kuchitsu K Plant Cell Physiol; 2004 Jun; 45(6):693-702. PubMed ID: 15215504 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of Sun H; Guo X; Xu F; Wu D; Zhang X; Lou M; Luo F; Xu G; Zhang Y Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627334 [TBL] [Abstract][Full Text] [Related]
18. A point mutation in VIG1 boosts development and chilling tolerance in rice. Xiong D; Wang J; Wang R; Wang Y; Li Y; Sun G; Yao S Nat Commun; 2024 Sep; 15(1):8212. PubMed ID: 39294143 [TBL] [Abstract][Full Text] [Related]
19. Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture. Malheiros RSP; Costa LC; Ávila RT; Pimenta TM; Teixeira LS; Brito FAL; Zsögön A; Araújo WL; Ribeiro DM Planta; 2019 Jul; 250(1):333-345. PubMed ID: 31030327 [TBL] [Abstract][Full Text] [Related]
20. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). Zhao H; Ma T; Wang X; Deng Y; Ma H; Zhang R; Zhao J Plant Cell Environ; 2015 Nov; 38(11):2208-22. PubMed ID: 25311360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]