These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38445833)

  • 1. Tuning Supramolecular Chirality in Iodinated Amphiphilic Peptides Through Tripeptide Linker Editing.
    MacPherson DS; Dave D; Kassem S; Doganata S; Zeglis BM; Ulijn RV
    Biomacromolecules; 2024 Apr; 25(4):2277-2285. PubMed ID: 38445833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the matrix metalloproteinase-1 degradability of peptide amphiphile nanofibers through supramolecular engineering.
    Shi Y; Ferreira DS; Banerjee J; Pickford AR; Azevedo HS
    Biomater Sci; 2019 Dec; 7(12):5132-5142. PubMed ID: 31576824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning of the Supramolecular Helicity of Peptide-Based Gel Nanofibers.
    Misra S; Singh P; Singh AK; Roy L; Kuila S; Dey S; Mahapatra AK; Nanda J
    J Phys Chem B; 2022 Dec; 126(51):10882-10892. PubMed ID: 36516185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Chirality on Cell Spreading and Differentiation: From Chiral Molecules to Chiral Self-Assembly.
    Dou X; Wu B; Liu J; Zhao C; Qin M; Wang Z; Schönherr H; Feng C
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38568-38577. PubMed ID: 31584794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular chirality in self-assembled peptide amphiphile nanostructures.
    Garifullin R; Guler MO
    Chem Commun (Camb); 2015 Aug; 51(62):12470-3. PubMed ID: 26146021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid conformations control the morphological and chiral features of the self-assembled peptide nanostructures: Young investigators perspective.
    Zhou P; Wang J; Wang M; Hou J; Lu JR; Xu H
    J Colloid Interface Sci; 2019 Jul; 548():244-254. PubMed ID: 31004957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Tyrosine Iodination on the Aggregation and Cleavage Kinetics of MMP-9-Responsive Peptide Sequences.
    MacPherson DS; McPhee SA; Zeglis BM; Ulijn RV
    ACS Biomater Sci Eng; 2022 Feb; 8(2):579-587. PubMed ID: 35050574
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Marciano Y; Nayeem N; Dave D; Ulijn RV; Contel M
    ACS Biomater Sci Eng; 2023 Jun; 9(6):3379-3389. PubMed ID: 37192486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding self-assembled amphiphilic peptide supramolecular structures from primary structure helix propensity.
    Baumann MK; Textor M; Reimhult E
    Langmuir; 2008 Aug; 24(15):7645-7. PubMed ID: 18597507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of supramolecular chirality of nanofibers and its effect on protein adhesion.
    Lv K; Zhang L; Lu W; Liu M
    ACS Appl Mater Interfaces; 2014; 6(21):18878-84. PubMed ID: 25302778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Left or Right: How Does Amino Acid Chirality Affect the Handedness of Nanostructures Self-Assembled from Short Amphiphilic Peptides?
    Wang M; Zhou P; Wang J; Zhao Y; Ma H; Lu JR; Xu H
    J Am Chem Soc; 2017 Mar; 139(11):4185-4194. PubMed ID: 28240550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of peptide nanofibers with chirality-encoded antimicrobial activity.
    Xie YY; Qin XT; Zhang J; Sun MY; Wang FP; Huang M; Jia SR; Qi W; Wang Y; Zhong C
    J Colloid Interface Sci; 2022 Sep; 622():135-146. PubMed ID: 35490617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular peptides from the thermoplastic squid sucker ring teeth form amyloid-like cross-β supramolecular networks.
    Hiew SH; Guerette PA; Zvarec OJ; Phillips M; Zhou F; Su H; Pervushin K; Orner BP; Miserez A
    Acta Biomater; 2016 Dec; 46():41-54. PubMed ID: 27693688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycine Substitution Effects on the Supramolecular Morphology and Rigidity of Cell-Adhesive Amphiphilic Peptides.
    Ishida A; Watanabe G; Oshikawa M; Ajioka I; Muraoka T
    Chemistry; 2019 Oct; 25(59):13523-13530. PubMed ID: 31283853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling supramolecular filament chirality of hydrogel by co-assembly of enantiomeric aromatic peptides.
    Yang X; Lu H; Tao Y; Zhang H; Wang H
    J Nanobiotechnology; 2022 Feb; 20(1):77. PubMed ID: 35144637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning supramolecular rigidity of peptide fibers through molecular structure.
    Pashuck ET; Cui H; Stupp SI
    J Am Chem Soc; 2010 May; 132(17):6041-6. PubMed ID: 20377229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sheet-like assemblies of charged amphiphilic α/β-peptides at the air-water interface.
    Segman-Magidovich S; Lee MR; Vaiser V; Struth B; Gellman SH; Rapaport H
    Chemistry; 2011 Dec; 17(52):14857-66. PubMed ID: 22105992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen Bonding Stiffens Peptide Amphiphile Supramolecular Filaments by Aza-Glycine Residues.
    Godbe JM; Freeman R; Lewis JA; Sasselli IR; Sangji MH; Stupp SI
    Acta Biomater; 2021 Nov; 135():87-99. PubMed ID: 34481055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling 1D Nanostructures and Handedness by Polar Residue Chirality of Amphiphilic Peptides.
    Xu H; Qi K; Zong C; Deng J; Zhou P; Hu X; Ma X; Wang D; Wang M; Zhang J; King SM; Rogers SE; Lu JR; Yang J; Wang J
    Small; 2024 Feb; 20(5):e2304424. PubMed ID: 37726235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.