These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38446167)

  • 41. Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis.
    Meinild Lundby AK; Jacobs RA; Gehrig S; de Leur J; Hauser M; Bonne TC; Flück D; Dandanell S; Kirk N; Kaech A; Ziegler U; Larsen S; Lundby C
    Acta Physiol (Oxf); 2018 Jan; 222(1):. PubMed ID: 28580772
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptional control, but not subcellular location, of PGC-1α is altered following exercise in a hot environment.
    Heesch MW; Shute RJ; Kreiling JL; Slivka DR
    J Appl Physiol (1985); 2016 Sep; 121(3):741-9. PubMed ID: 27445305
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Supplement with whey protein hydrolysate in contrast to carbohydrate supports mitochondrial adaptations in trained runners.
    Hansen M; Oxfeldt M; Larsen AE; Thomsen LS; Rokkedal-Lausch T; Christensen B; Rittig N; De Paoli FV; Bangsbo J; Ørtenblad N; Madsen K
    J Int Soc Sports Nutr; 2020 Sep; 17(1):46. PubMed ID: 32894140
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Increased oxygen extraction and mitochondrial protein expression after small muscle mass endurance training.
    Skattebo Ø; Capelli C; Rud B; Auensen M; Calbet JAL; Hallén J
    Scand J Med Sci Sports; 2020 Sep; 30(9):1615-1631. PubMed ID: 32403173
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation.
    Hammond KM; Sale C; Fraser W; Tang J; Shepherd SO; Strauss JA; Close GL; Cocks M; Louis J; Pugh J; Stewart C; Sharples AP; Morton JP
    J Physiol; 2019 Sep; 597(18):4779-4796. PubMed ID: 31364768
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle.
    Little JP; Safdar A; Bishop D; Tarnopolsky MA; Gibala MJ
    Am J Physiol Regul Integr Comp Physiol; 2011 Jun; 300(6):R1303-10. PubMed ID: 21451146
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle.
    Daussin FN; Zoll J; Ponsot E; Dufour SP; Doutreleau S; Lonsdorfer E; Ventura-Clapier R; Mettauer B; Piquard F; Geny B; Richard R
    J Appl Physiol (1985); 2008 May; 104(5):1436-41. PubMed ID: 18292295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle.
    Morton JP; Croft L; Bartlett JD; Maclaren DP; Reilly T; Evans L; McArdle A; Drust B
    J Appl Physiol (1985); 2009 May; 106(5):1513-21. PubMed ID: 19265068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of the autophagy system during chronic contractile activity-induced muscle adaptations.
    Kim Y; Hood DA
    Physiol Rep; 2017 Jul; 5(14):. PubMed ID: 28720712
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transient transcriptional events in human skeletal muscle at the outset of concentric resistance exercise training.
    Murton AJ; Billeter R; Stephens FB; Des Etages SG; Graber F; Hill RJ; Marimuthu K; Greenhaff PL
    J Appl Physiol (1985); 2014 Jan; 116(1):113-25. PubMed ID: 24265280
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MitoQ supplementation augments acute exercise-induced increases in muscle PGC1α mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men.
    Broome SC; Pham T; Braakhuis AJ; Narang R; Wang HW; Hickey AJR; Mitchell CJ; Merry TL
    Redox Biol; 2022 Jul; 53():102341. PubMed ID: 35623315
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 2-D DIGE analysis of the mitochondrial proteome from human skeletal muscle reveals time course-dependent remodelling in response to 14 consecutive days of endurance exercise training.
    Egan B; Dowling P; O'Connor PL; Henry M; Meleady P; Zierath JR; O'Gorman DJ
    Proteomics; 2011 Apr; 11(8):1413-28. PubMed ID: 21360670
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adaptations of skeletal muscle mitochondria to exercise training.
    Lundby C; Jacobs RA
    Exp Physiol; 2016 Jan; 101(1):17-22. PubMed ID: 26440213
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Forty high-intensity interval training sessions blunt exercise-induced changes in the nuclear protein content of PGC-1α and p53 in human skeletal muscle.
    Granata C; Oliveira RSF; Little JP; Bishop DJ
    Am J Physiol Endocrinol Metab; 2020 Feb; 318(2):E224-E236. PubMed ID: 31794264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. No Mitochondrial Related Transcriptional Changes in Human Skeletal Muscle after Local Heat Application.
    Kwon M; Robins L; McGlynn ML; Collins C; Pekas EJ; Park SY; Slivka D
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554930
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of local cold application during exercise on gene expression related to mitochondrial homeostasis.
    Meister B; Collins C; McGlynn M; Slivka D
    Appl Physiol Nutr Metab; 2021 Apr; 46(4):318-324. PubMed ID: 32961062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of heat acclimation on metabolic adaptations induced by endurance training in soleus rat muscle.
    Tardo-Dino PE; Taverny C; Siracusa J; Bourdon S; Baugé S; Koulmann N; Malgoyre A
    Physiol Rep; 2021 Aug; 9(16):e14686. PubMed ID: 34405575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The order of exercise during concurrent training for rehabilitation does not alter acute genetic expression, mitochondrial enzyme activity or improvements in muscle function.
    MacNeil LG; Glover E; Bergstra TG; Safdar A; Tarnopolsky MA
    PLoS One; 2014; 9(10):e109189. PubMed ID: 25289940
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens.
    Yeo WK; Paton CD; Garnham AP; Burke LM; Carey AL; Hawley JA
    J Appl Physiol (1985); 2008 Nov; 105(5):1462-70. PubMed ID: 18772325
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of lactate administration on mitochondrial enzyme activity and monocarboxylate transporters in mouse skeletal muscle.
    Takahashi K; Kitaoka Y; Matsunaga Y; Hatta H
    Physiol Rep; 2019 Sep; 7(17):e14224. PubMed ID: 31512405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.