These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38446597)

  • 1. Entangled Two-Photon Absorption in Transmission-Based Experiments: Deleterious Effects from Linear Optical Losses.
    Triana-Arango F; Ramírez-Alarcón R; Ramos-Ortiz G
    J Phys Chem A; 2024 Mar; 128(11):2210-2219. PubMed ID: 38446597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral Considerations of Entangled Two-Photon Absorption Effects in Hong-Ou-Mandel Interference Experiments.
    Triana-Arango F; Ramos-Ortiz G; Ramírez-Alarcón R
    J Phys Chem A; 2023 Mar; 127(11):2608-2617. PubMed ID: 36913489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study of the Validity of Entangled Two-Photon Absorption Measurements in Organic Compounds.
    Corona-Aquino S; Calderón-Losada O; Li-Gómez MY; Cruz-Ramirez H; Álvarez-Venicio V; Carreón-Castro MDP; de J León-Montiel R; U'Ren AB
    J Phys Chem A; 2022 Apr; 126(14):2185-2195. PubMed ID: 35383460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations of Molecular Optical Properties Using Quantum Light and Hong-Ou-Mandel Interferometry.
    Eshun A; Gu B; Varnavski O; Asban S; Dorfman KE; Mukamel S; Goodson T
    J Am Chem Soc; 2021 Jun; 143(24):9070-9081. PubMed ID: 34124903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Modeling of Organic Chromophores for Entangled Two-Photon Absorption.
    Kang G; Nasiri Avanaki K; Mosquera MA; Burdick RK; Villabona-Monsalve JP; Goodson T; Schatz GC
    J Am Chem Soc; 2020 Jun; 142(23):10446-10458. PubMed ID: 32401020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colors of entangled two-photon absorption.
    Varnavski O; Giri SK; Chiang TM; Zeman CJ; Schatz GC; Goodson T
    Proc Natl Acad Sci U S A; 2023 Aug; 120(35):e2307719120. PubMed ID: 37603737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental upper bounds for resonance-enhanced entangled two-photon absorption cross section of indocyanine green.
    He M; Hickam BP; Harper N; Cushing SK
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38445732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiophene dendrimers as entangled photon sensor materials.
    Harpham MR; Süzer O; Ma CQ; Bäuerle P; Goodson T
    J Am Chem Soc; 2009 Jan; 131(3):973-9. PubMed ID: 19123819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Entangled Two-Photon Absorption for Picosecond Quantum Spectroscopy.
    Burdick RK; Schatz GC; Goodson T
    J Am Chem Soc; 2021 Oct; 143(41):16930-16934. PubMed ID: 34613733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entangled Photon Spectroscopy.
    Eshun A; Varnavski O; Villabona-Monsalve JP; Burdick RK; Goodson T
    Acc Chem Res; 2022 Apr; 55(7):991-1003. PubMed ID: 35312287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entangled Photon Excited Fluorescence in Organic Materials: An Ultrafast Coincidence Detector.
    Varnavski O; Pinsky B; Goodson T
    J Phys Chem Lett; 2017 Jan; 8(2):388-393. PubMed ID: 28029793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entangled Two Photon Absorption Cross Section on the 808 nm Region for the Common Dyes Zinc Tetraphenylporphyrin and Rhodamine B.
    Villabona-Monsalve JP; Calderón-Losada O; Nuñez Portela M; Valencia A
    J Phys Chem A; 2017 Oct; 121(41):7869-7875. PubMed ID: 28933852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing ultra-fast dephasing via entangled photon pairs.
    Liu X; Li T; Wang J; Kamble MR; Zheltikov AM; Agarwal GS
    Opt Express; 2022 Dec; 30(26):47463-47474. PubMed ID: 36558674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear and Nonlinear Optical Properties of All-
    Mandal H; Ogunyemi OJ; Nicholson JL; Orr ME; Lalisse RF; Rentería-Gómez Á; Gogoi AR; Gutierrez O; Michaudel Q; Goodson T
    J Phys Chem C Nanomater Interfaces; 2024 Feb; 128(6):2518-2528. PubMed ID: 38379916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hong-Ou-Mandel Interference with a Single Atom.
    Ralley KA; Lerner IV; Yurkevich IV
    Sci Rep; 2015 Sep; 5():13947. PubMed ID: 26365761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations of Thienoacene Molecules for Classical and Entangled Two-Photon Absorption.
    Eshun A; Cai Z; Awies M; Yu L; Goodson T
    J Phys Chem A; 2018 Oct; 122(41):8167-8182. PubMed ID: 30251540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon absorption cross sections of pulsed entangled beams.
    Schlawin F
    J Chem Phys; 2024 Apr; 160(14):. PubMed ID: 38619059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.
    Li Y; Zhou ZY; Ding DS; Shi BS
    Opt Express; 2015 Nov; 23(22):28792-800. PubMed ID: 26561148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High speed imaging of spectral-temporal correlations in Hong-Ou-Mandel interference.
    Zhang Y; England D; Nomerotski A; Sussman B
    Opt Express; 2021 Aug; 29(18):28217-28227. PubMed ID: 34614958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons.
    Quan R; Zhai Y; Wang M; Hou F; Wang S; Xiang X; Liu T; Zhang S; Dong R
    Sci Rep; 2016 Jul; 6():30453. PubMed ID: 27452276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.