These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38446654)

  • 1. SGLMDA: A Subgraph Learning-Based Method for miRNA-Disease Association Prediction.
    Ji C; Yu N; Wang Y; Ni J; Zheng C
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1191-1201. PubMed ID: 38446654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMCMDA: neural multicategory MiRNA-disease association prediction.
    Wang J; Li J; Yue K; Wang L; Ma Y; Li Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33778850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved random forest-based computational model for predicting novel miRNA-disease associations.
    Yao D; Zhan X; Kwoh CK
    BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PMDAGS: Predicting miRNA-Disease Associations With Graph Nonlinear Diffusion Convolution Network and Similarities.
    Yan C; Duan G
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):394-404. PubMed ID: 38358864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SFGAE: a self-feature-based graph autoencoder model for miRNA-disease associations prediction.
    Ma M; Na S; Zhang X; Chen C; Xu J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36037084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
    Chen X; Yin J; Qu J; Huang L
    PLoS Comput Biol; 2018 Aug; 14(8):e1006418. PubMed ID: 30142158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting miRNA-Disease Associations Based On Multi-View Variational Graph Auto-Encoder With Matrix Factorization.
    Ding Y; Lei X; Liao B; Wu FX
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):446-457. PubMed ID: 34111017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting miRNA-disease associations based on PPMI and attention network.
    Xie X; Wang Y; He K; Sheng N
    BMC Bioinformatics; 2023 Mar; 24(1):113. PubMed ID: 36959547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases.
    Yan C; Wang J; Ni P; Lan W; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):233-243. PubMed ID: 29990253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks.
    Li J; Li Z; Nie R; You Z; Bao W
    Mol Genet Genomics; 2020 Sep; 295(5):1197-1209. PubMed ID: 32500265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder.
    Li L; Wang YT; Ji CM; Zheng CH; Ni JC; Su YS
    PLoS Comput Biol; 2021 Dec; 17(12):e1009655. PubMed ID: 34890410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PGCNMDA: Learning node representations along paths with graph convolutional network for predicting miRNA-disease associations.
    Chu S; Duan G; Yan C
    Methods; 2024 Sep; 229():71-81. PubMed ID: 38909974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for miRNA diffusion association prediction using machine learning decoding of multi-level heterogeneous graph Transformer encoded representations.
    Wen S; Liu Y; Yang G; Chen W; Wu H; Zhu X; Wang Y
    Sci Rep; 2024 Sep; 14(1):20490. PubMed ID: 39227405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model.
    Zhang L; Liu B; Li Z; Zhu X; Liang Z; An J
    BMC Bioinformatics; 2020 Oct; 21(1):470. PubMed ID: 33087064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information.
    Ji BY; You ZH; Chen ZH; Wong L; Yi HC
    BMC Bioinformatics; 2020 Sep; 21(1):401. PubMed ID: 32912137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNRLCNN: A CNN Framework for Identifying MiRNA-Disease Associations Using Latent Feature Matrix Extraction with Positive Samples.
    Zhong J; Zhou W; Kang J; Fang Z; Xie M; Xiao Q; Peng W
    Interdiscip Sci; 2022 Jun; 14(2):607-622. PubMed ID: 35428965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global-local aware Heterogeneous Graph Contrastive Learning for multifaceted association prediction in miRNA-gene-disease networks.
    Si Y; Huang Z; Fang Z; Yuan Z; Huang Z; Li Y; Wei Y; Wu F; Yao YF
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39256197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MSHGANMDA: Meta-Subgraphs Heterogeneous Graph Attention Network for miRNA-Disease Association Prediction.
    Wang S; Wang F; Qiao S; Zhuang Y; Zhang K; Pang S; Nowak R; Lv Z
    IEEE J Biomed Health Inform; 2023 Oct; 27(10):4639-4648. PubMed ID: 35759606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EPMDA: Edge Perturbation Based Method for miRNA-Disease Association Prediction.
    Dong Y; Sun Y; Qin C; Zhu W
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2170-2175. PubMed ID: 31514148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.