These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 38446739)
1. Diff-AMP: tailored designed antimicrobial peptide framework with all-in-one generation, identification, prediction and optimization. Wang R; Wang T; Zhuo L; Wei J; Fu X; Zou Q; Yao X Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38446739 [TBL] [Abstract][Full Text] [Related]
2. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model. Lee H; Lee S; Lee I; Nam H Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699 [TBL] [Abstract][Full Text] [Related]
3. Fuse feeds as one: cross-modal framework for general identification of AMPs. Zhang W; Xu Y; Wang A; Chen G; Zhao J Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37779248 [TBL] [Abstract][Full Text] [Related]
4. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities. Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638 [TBL] [Abstract][Full Text] [Related]
5. PTPAMP: prediction tool for plant-derived antimicrobial peptides. Jaiswal M; Singh A; Kumar S Amino Acids; 2023 Jan; 55(1):1-17. PubMed ID: 35864258 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning Prediction of Antimicrobial Peptides. Wang G; Vaisman II; van Hoek ML Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806 [TBL] [Abstract][Full Text] [Related]
7. Benchmarks in antimicrobial peptide prediction are biased due to the selection of negative data. Sidorczuk K; Gagat P; Pietluch F; Kała J; Rafacz D; Bąkała L; Słowik J; Kolenda R; Rödiger S; Fingerhut LCHW; Cooke IR; Mackiewicz P; Burdukiewicz M Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35988923 [TBL] [Abstract][Full Text] [Related]
8. PyAMPA: a high-throughput prediction and optimization tool for antimicrobial peptides. Ramos-Llorens M; Bello-Madruga R; Valle J; Andreu D; Torrent M mSystems; 2024 Jul; 9(7):e0135823. PubMed ID: 38934543 [TBL] [Abstract][Full Text] [Related]
9. ProT-Diff: A Modularized and Efficient Strategy for De Novo Generation of Antimicrobial Peptide Sequences by Integrating Protein Language and Diffusion Models. Wang XF; Tang JY; Sun J; Dorje S; Sun TQ; Peng B; Ji XW; Li Z; Zhang XE; Wang DB Adv Sci (Weinh); 2024 Nov; 11(43):e2406305. PubMed ID: 39319609 [TBL] [Abstract][Full Text] [Related]
11. An efficient hybrid deep learning architecture for predicting short antimicrobial peptides. Nguyen QH; Nguyen-Vo TH; Do TTT; Nguyen BP Proteomics; 2024 Jul; 24(14):e2300382. PubMed ID: 38837544 [TBL] [Abstract][Full Text] [Related]
12. TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides. Zhou W; Liu Y; Li Y; Kong S; Wang W; Ding B; Han J; Mou C; Gao X; Liu J Patterns (N Y); 2023 Mar; 4(3):100702. PubMed ID: 36960450 [TBL] [Abstract][Full Text] [Related]
13. Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries. Gautam A; Sharma A; Jaiswal S; Fatma S; Arora V; Iquebal MA; Nandi S; Sundaray JK; Jayasankar P; Rai A; Kumar D Probiotics Antimicrob Proteins; 2016 Sep; 8(3):141-9. PubMed ID: 27141850 [TBL] [Abstract][Full Text] [Related]
14. Proteomic Screening for Prediction and Design of Antimicrobial Peptides with AmpGram. Burdukiewicz M; Sidorczuk K; Rafacz D; Pietluch F; Chilimoniuk J; Rödiger S; Gagat P Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560350 [TBL] [Abstract][Full Text] [Related]
15. Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms. Chung CR; Jhong JH; Wang Z; Chen S; Wan Y; Horng JT; Lee TY Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024233 [TBL] [Abstract][Full Text] [Related]
16. sAMP-VGG16: Force-field assisted image-based deep neural network prediction model for short antimicrobial peptides. Pandey P; Srivastava A Proteins; 2025 Jan; 93(1):372-383. PubMed ID: 38520179 [TBL] [Abstract][Full Text] [Related]
17. Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile. Jan A; Hayat M; Wedyan M; Alturki R; Gazzawe F; Ali H; Alarfaj FK Comput Biol Med; 2022 Dec; 151(Pt A):106311. PubMed ID: 36410097 [TBL] [Abstract][Full Text] [Related]
18. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning. Yan J; Cai J; Zhang B; Wang Y; Wong DF; Siu SWI Antibiotics (Basel); 2022 Oct; 11(10):. PubMed ID: 36290108 [TBL] [Abstract][Full Text] [Related]
19. AMP-RNNpro: a two-stage approach for identification of antimicrobials using probabilistic features. Shaon MSH; Karim T; Sultan MF; Ali MM; Ahmed K; Hasan MZ; Moustafa A; Bui FM; Al-Zahrani FA Sci Rep; 2024 Jun; 14(1):12892. PubMed ID: 38839785 [TBL] [Abstract][Full Text] [Related]
20. Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning. Yan J; Bhadra P; Li A; Sethiya P; Qin L; Tai HK; Wong KH; Siu SWI Mol Ther Nucleic Acids; 2020 Jun; 20():882-894. PubMed ID: 32464552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]