These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38446785)

  • 1. Using Knowledge-Guided Machine Learning To Assess Patterns of Areal Change in Waterbodies across the Contiguous United States.
    Wander HL; Farruggia MJ; La Fuente S; Korver MC; Chapina RJ; Robinson J; Bah A; Munthali E; Ghosh R; Stachelek J; Khandelwal A; Hanson PC; Weathers KC
    Environ Sci Technol; 2024 Mar; 58(11):5003-5013. PubMed ID: 38446785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote sensing to detect harmful algal blooms in inland waterbodies.
    Liu S; Glamore W; Tamburic B; Morrow A; Johnson F
    Sci Total Environ; 2022 Dec; 851(Pt 1):158096. PubMed ID: 35987216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward understanding the contribution of waterbodies to the methane emissions of a permafrost landscape on a regional scale-A case study from the Mackenzie Delta, Canada.
    Kohnert K; Juhls B; Muster S; Antonova S; Serafimovich A; Metzger S; Hartmann J; Sachs T
    Glob Chang Biol; 2018 Sep; 24(9):3976-3989. PubMed ID: 29697179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote sensing of water colour in small southeastern Australian waterbodies.
    Liu S; Kim S; Glamore W; Tamburic B; Johnson F
    J Environ Manage; 2024 Feb; 352():120096. PubMed ID: 38262286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems.
    Liu L; Zhou W; Guan K; Peng B; Xu S; Tang J; Zhu Q; Till J; Jia X; Jiang C; Wang S; Qin Z; Kong H; Grant R; Mezbahuddin S; Kumar V; Jin Z
    Nat Commun; 2024 Jan; 15(1):357. PubMed ID: 38191521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of remote sensing algorithm for total phosphorus concentration in eutrophic lakes: Conventional or machine learning?
    Xiong J; Lin C; Cao Z; Hu M; Xue K; Chen X; Ma R
    Water Res; 2022 May; 215():118213. PubMed ID: 35247602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States.
    Ren X; Mi Z; Georgopoulos PG
    Environ Int; 2020 Sep; 142():105827. PubMed ID: 32593834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of dissolved organic carbon from inland waters at a large scale using satellite data and machine learning methods.
    Harkort L; Duan Z
    Water Res; 2023 Feb; 229():119478. PubMed ID: 36527868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing.
    Gorham T; Jia Y; Shum CK; Lee J
    Harmful Algae; 2017 Jun; 66():13-19. PubMed ID: 28602249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forecasting freshwater cyanobacterial harmful algal blooms for Sentinel-3 satellite resolved U.S. lakes and reservoirs.
    Schaeffer BA; Reynolds N; Ferriby H; Salls W; Smith D; Johnston JM; Myer M
    J Environ Manage; 2024 Jan; 349():119518. PubMed ID: 37944321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal variability in Swedish lake ecosystems.
    Eason T; Garmestani A; Angeler DG
    PLoS One; 2022; 17(3):e0265571. PubMed ID: 35312714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal continuous monitoring of cyanobacterial blooms in Lake Taihu at an hourly scale using machine learning.
    Wang S; Zhang X; Wang C; Chen N
    Sci Total Environ; 2023 Jan; 857(Pt 2):159480. PubMed ID: 36265631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing.
    Coffer MM; Schaeffer BA; Darling JA; Urquhart EA; Salls WB
    Ecol Indic; 2020 Apr; 111():105976. PubMed ID: 34326705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative monitoring strategy for marine and freshwater harmful algal blooms and toxins across the freshwater-to-marine continuum.
    Howard MDA; Smith J; Caron DA; Kudela RM; Loftin K; Hayashi K; Fadness R; Fricke S; Kann J; Roethler M; Tatters A; Theroux S
    Integr Environ Assess Manag; 2023 May; 19(3):586-604. PubMed ID: 35748667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm.
    Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G
    Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A stacked machine learning model for multi-step ahead prediction of lake surface water temperature.
    Di Nunno F; Zhu S; Ptak M; Sojka M; Granata F
    Sci Total Environ; 2023 Sep; 890():164323. PubMed ID: 37216992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing stormwater quality and watershed typologies across the United States: A machine learning approach.
    Balderas Guzman C; Wang R; Muellerklein O; Smith M; Eger CG
    Water Res; 2022 Jun; 216():118283. PubMed ID: 35339052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of lake-specific characteristics for water quality across the continental United States.
    Read EK; Patil VP; Oliver SK; Hetherington AL; Brentrup JA; Zwart JA; Winters KM; Corman JR; Nodine ER; Woolway RI; Dugan HA; Jaimes A; Santoso AB; Hong GS; Winslow LA; Hanson PC; Weathers KC
    Ecol Appl; 2015 Jun; 25(4):943-55. PubMed ID: 26465035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide.
    Peacock M; Audet J; Bastviken D; Cook S; Evans CD; Grinham A; Holgerson MA; Högbom L; Pickard AE; Zieliński P; Futter MN
    Glob Chang Biol; 2021 Oct; 27(20):5109-5123. PubMed ID: 34165851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.