These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38447029)

  • 1. Lanthanide Complex for Single-Molecule Fluorescent in Situ Hybridization and Background-Free Imaging.
    Su F; Chen S; Liu Y; Zhou J; Du Z; Luo X; Wen S; Jin D
    Anal Chem; 2024 Mar; 96(11):4430-4436. PubMed ID: 38447029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lanthanide-Complex-Enhanced Bioorthogonal Branched DNA Amplification.
    Zhao F; Guan Y; Su F; Du Z; Wen S; Zhang L; Jin D
    Anal Chem; 2024 Jan; 96(4):1556-1564. PubMed ID: 38214216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Specific Fluorescence In Situ Hybridization with Quantum Dots for Single-Molecule RNA Imaging in Formalin-Fixed Paraffin-Embedded Tumor Tissues.
    Zhao Z; Jiang M; He C; Yin W; Feng Y; Wang P; Ying L; Fu T; Su D; Peng R; Tan W
    ACS Nano; 2024 Apr; 18(14):9958-9968. PubMed ID: 38547522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HT-smFISH: a cost-effective and flexible workflow for high-throughput single-molecule RNA imaging.
    Safieddine A; Coleno E; Lionneton F; Traboulsi AM; Salloum S; Lecellier CH; Gostan T; Georget V; Hassen-Khodja C; Imbert A; Mueller F; Walter T; Peter M; Bertrand E
    Nat Protoc; 2023 Jan; 18(1):157-187. PubMed ID: 36280749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, Labeling, and Application of Probes for RNA smFISH.
    Piskadlo E; Eichenberger BT; Giorgetti L; Chao JA
    Methods Mol Biol; 2022; 2537():173-183. PubMed ID: 35895264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing neuroinflammation with fluorescence and luminescent lanthanide-based in situ hybridization.
    Parker LM; Sayyadi N; Staikopoulos V; Shrestha A; Hutchinson MR; Packer NH
    J Neuroinflammation; 2019 Mar; 16(1):65. PubMed ID: 30898121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence In Situ Imaging of Dendritic RNAs at Single-Molecule Resolution.
    Batish M; Tyagi S
    Curr Protoc Neurosci; 2019 Sep; 89(1):e79. PubMed ID: 31532916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Fluorescence In Situ Hybridization Detection of Plant mRNAs with Single-Molecule Resolution.
    Huang K; Batish M; Teng C; Harkess A; Meyers BC; Caplan JL
    Methods Mol Biol; 2020; 2166():23-33. PubMed ID: 32710401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of HER2 and estrogen receptor heterogeneity in breast cancer by single-molecule RNA fluorescence in situ hybridization.
    Annaratone L; Simonetti M; Wernersson E; MarchiĆ² C; Garnerone S; Scalzo MS; Bienko M; Chiarle R; Sapino A; Crosetto N
    Oncotarget; 2017 Mar; 8(12):18680-18698. PubMed ID: 28423635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Molecule RNA FISH (smFISH) in Whole-Mount Mouse Embryonic Organs.
    Wang S
    Curr Protoc Cell Biol; 2019 Jun; 83(1):e79. PubMed ID: 30394692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Time-Resolved Biosensing and Bioimaging Based on Lanthanide-Doped Nanoparticles.
    Ma Q; Wang J; Li Z; Lv X; Liang L; Yuan Q
    Small; 2019 Aug; 15(32):e1804969. PubMed ID: 30761729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reference genes for quantitative Arabidopsis single molecule RNA fluorescence in situ hybridization.
    Duncan S; Johansson HE; Ding Y
    J Exp Bot; 2023 Apr; 74(7):2405-2415. PubMed ID: 36579724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automation of Multiplexed RNAscope Single-Molecule Fluorescent In Situ Hybridization and Immunohistochemistry for Spatial Tissue Mapping.
    Roberts K; Bayraktar OA
    Methods Mol Biol; 2020; 2148():229-244. PubMed ID: 32394386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells.
    Cui Y; Hu D; Markillie LM; Chrisler WB; Gaffrey MJ; Ansong C; Sussel L; Orr G
    Nucleic Acids Res; 2018 Jan; 46(2):e7. PubMed ID: 29040675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved microscopy for imaging lanthanide luminescence in living cells.
    Gahlaut N; Miller LW
    Cytometry A; 2010 Dec; 77(12):1113-25. PubMed ID: 20824630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA and Protein Detection by Single-Molecule Fluorescent in Situ Hybridization (smFISH) Combined with Immunofluorescence in the Budding Yeast S. cerevisiae.
    Maekiniemi A; Singer RH
    Methods Mol Biol; 2024; 2784():45-58. PubMed ID: 38502477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA Imaging with Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH).
    Moffitt JR; Zhuang X
    Methods Enzymol; 2016; 572():1-49. PubMed ID: 27241748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Molecule Fluorescent In Situ Hybridization (smFISH) for RNA Detection in Bacteria.
    Ciolli Mattioli C; Avraham R
    Methods Mol Biol; 2024; 2784():3-23. PubMed ID: 38502475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system.
    Hanaoka K; Kikuchi K; Kobayashi S; Nagano T
    J Am Chem Soc; 2007 Nov; 129(44):13502-9. PubMed ID: 17927176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Contrast Luminescent Immunohistochemistry Using PEGylated Lanthanide Complexes.
    Su F; Luo X; Du Z; Chen Z; Liu Y; Jin X; Guo Z; Lu J; Jin D
    Anal Chem; 2022 Dec; 94(50):17587-17594. PubMed ID: 36464815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.