BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38447046)

  • 1. Long noncoding RNA GATA2AS influences human erythropoiesis by transcription factor and chromatin landscape modulation.
    Liu G; Kim J; Nguyen N; Zhou L; Dean A
    Blood; 2024 May; 143(22):2300-2313. PubMed ID: 38447046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory association of long noncoding RNAs and chromatin accessibility facilitates erythroid differentiation.
    Ren Y; Zhu J; Han Y; Li P; Wu J; Qu H; Zhang Z; Fang X
    Blood Adv; 2021 Dec; 5(23):5396-5409. PubMed ID: 34644394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional repression of lncRNA and miRNA subsets mediated by LRF during erythropoiesis.
    Athanasopoulou K; Chondrou V; Xiropotamos P; Psarias G; Vasilopoulos Y; Georgakilas GK; Sgourou A
    J Mol Med (Berl); 2023 Sep; 101(9):1097-1112. PubMed ID: 37486375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation.
    Pilon AM; Ajay SS; Kumar SA; Steiner LA; Cherukuri PF; Wincovitch S; Anderson SM; ; Mullikin JC; Gallagher PG; Hardison RC; Margulies EH; Bodine DM
    Blood; 2011 Oct; 118(17):e139-48. PubMed ID: 21900194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation.
    Alvarez-Dominguez JR; Hu W; Yuan B; Shi J; Park SS; Gromatzky AA; van Oudenaarden A; Lodish HF
    Blood; 2014 Jan; 123(4):570-81. PubMed ID: 24200680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of alpha-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34(+) cells in culture.
    Mahajan MC; Karmakar S; Newburger PE; Krause DS; Weissman SM
    Exp Hematol; 2009 Oct; 37(10):1143-1156.e3. PubMed ID: 19607874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation.
    Moriguchi T; Yamamoto M
    Int J Hematol; 2014 Nov; 100(5):417-24. PubMed ID: 24638828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Krüppel-like transcription factors KLF1 and KLF2 have unique and coordinate roles in regulating embryonic erythroid precursor maturation.
    Vinjamur DS; Wade KJ; Mohamad SF; Haar JL; Sawyer ST; Lloyd JA
    Haematologica; 2014 Oct; 99(10):1565-73. PubMed ID: 25150253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WDR82-binding long noncoding RNA lncEry controls mouse erythroid differentiation and maturation.
    Yang S; Sun G; Wu P; Chen C; Kuang Y; Liu L; Zheng Z; He Y; Gu Q; Lu T; Zhu C; Wang F; Gou F; Yang Z; Zhao X; Yuan S; Yang L; Lu S; Li Y; Lv X; Dong F; Ma Y; Yu J; Ng LG; Shi L; Liu J; Shi L; Cheng T; Cheng H
    J Exp Med; 2022 Apr; 219(4):. PubMed ID: 35315911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of erythroid-specific genes by overexpression of GATA-2 in K562 cells.
    Harigae H; Okitsu Y; Yokoyama H; Fujiwara T; Inomata M; Takahashi S; Minegishi N; Kaku M; Sasaki T
    Int J Hematol; 2006 Jul; 84(1):38-42. PubMed ID: 16867900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The histone methyltransferase Setd8 alters the chromatin landscape and regulates the expression of key transcription factors during erythroid differentiation.
    Myers JA; Couch T; Murphy Z; Malik J; Getman M; Steiner LA
    Epigenetics Chromatin; 2020 Mar; 13(1):16. PubMed ID: 32178723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intricate regulatory circuit between FLI1 and GATA1/GATA2/LDB1/ERG dictates erythroid vs. megakaryocytic differentiation.
    Wang C; Hu M; Yu K; Liu W; Hu A; Kuang Y; Huang L; Gajendran B; Zacksenhaus E; Xiao X; Ben-David Y
    Mol Med Rep; 2024 Jun; 29(6):. PubMed ID: 38695236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation.
    Suzuki M; Kobayashi-Osaki M; Tsutsumi S; Pan X; Ohmori S; Takai J; Moriguchi T; Ohneda O; Ohneda K; Shimizu R; Kanki Y; Kodama T; Aburatani H; Yamamoto M
    Genes Cells; 2013 Nov; 18(11):921-33. PubMed ID: 23911012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive Analysis of microRNAs in Human Adult Erythropoiesis.
    Nath A; Rayabaram J; Ijee S; Bagchi A; Chaudhury AD; Roy D; Chambayil K; Singh J; Nakamura Y; Velayudhan SR
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Runx1 promotes murine erythroid progenitor proliferation and inhibits differentiation by preventing Pu.1 downregulation.
    Willcockson MA; Taylor SJ; Ghosh S; Healton SE; Wheat JC; Wilson TJ; Steidl U; Skoultchi AI
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17841-17847. PubMed ID: 31431533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA Sequencing Analyses of Gene Expression during Epstein-Barr Virus Infection of Primary B Lymphocytes.
    Wang C; Li D; Zhang L; Jiang S; Liang J; Narita Y; Hou I; Zhong Q; Zheng Z; Xiao H; Gewurz BE; Teng M; Zhao B
    J Virol; 2019 Jul; 93(13):. PubMed ID: 31019051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deficiencies in the DNA Binding Protein ARID3a Alter Chromatin Structures Important for Early Human Erythropoiesis.
    Garton J; Shankar M; Chapman B; Rose K; Gaffney PM; Webb CF
    Immunohorizons; 2021 Oct; 5(10):802-817. PubMed ID: 34663594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic landscape of chromatin accessibility and transcriptomic changes during differentiation of human embryonic stem cells into dopaminergic neurons.
    Meléndez-Ramírez C; Cuevas-Diaz Duran R; Barrios-García T; Giacoman-Lozano M; López-Ornelas A; Herrera-Gamboa J; Estudillo E; Soto-Reyes E; Velasco I; Treviño V
    Sci Rep; 2021 Aug; 11(1):16977. PubMed ID: 34417498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development.
    Paralkar VR; Mishra T; Luan J; Yao Y; Kossenkov AV; Anderson SM; Dunagin M; Pimkin M; Gore M; Sun D; Konuthula N; Raj A; An X; Mohandas N; Bodine DM; Hardison RC; Weiss MJ
    Blood; 2014 Mar; 123(12):1927-37. PubMed ID: 24497530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases.
    Wu P; Zuo X; Deng H; Liu X; Liu L; Ji A
    Brain Res Bull; 2013 Aug; 97():69-80. PubMed ID: 23756188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.