These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38447447)
1. Understanding the petal effect: Wetting properties and surface structure of natural rose petals and rose petal-derived surfaces. Parra-Vicente S; Ibáñez-Ibáñez PF; Cabrerizo-Vílchez M; Sánchez-Almazo I; Rodríguez-Valverde MÁ; Ruiz-Cabello FJM Colloids Surf B Biointerfaces; 2024 Apr; 236():113832. PubMed ID: 38447447 [TBL] [Abstract][Full Text] [Related]
2. Hierarchical Rose Petal Surfaces Delay the Early-Stage Bacterial Biofilm Growth. Cao Y; Jana S; Bowen L; Tan X; Liu H; Rostami N; Brown J; Jakubovics NS; Chen J Langmuir; 2019 Nov; 35(45):14670-14680. PubMed ID: 31630525 [TBL] [Abstract][Full Text] [Related]
3. Droplet Impact Dynamics on Biomimetic Replica of Yellow Rose Petals: Rebound to Micropinning Transition. Bandyopadhyay S; Shristi A; Kumawat V; Gope A; Mukhopadhyay A; Chakraborty S; Mukherjee R Langmuir; 2023 May; 39(17):6051-6060. PubMed ID: 37067511 [TBL] [Abstract][Full Text] [Related]
4. Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect. Lin HP; Chen LJ J Colloid Interface Sci; 2021 Dec; 603():539-549. PubMed ID: 34216950 [TBL] [Abstract][Full Text] [Related]
5. Observation of the rose petal effect over single- and dual-scale roughness surfaces. Yeh KY; Cho KH; Yeh YH; Promraksa A; Huang CH; Hsu CC; Chen LJ Nanotechnology; 2014 Aug; 25(34):345303. PubMed ID: 25100802 [TBL] [Abstract][Full Text] [Related]
6. Magnetic-Responsive Superhydrophobic Surface of Magnetorheological Elastomers Mimicking from Lotus Leaves to Rose Petals. Chen S; Zhu M; Zhang Y; Dong S; Wang X Langmuir; 2021 Feb; 37(7):2312-2321. PubMed ID: 33544610 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Bhushan B; Her EK Langmuir; 2010 Jun; 26(11):8207-17. PubMed ID: 20131881 [TBL] [Abstract][Full Text] [Related]
8. Wetting State Transition of Laser Direct Writing Aluminum Surface Based on Coupling Effect of Micro/Nanoscale Characteristics. Wan Q; Hu X; Yu T; Guo P; Wang J; Shi H; Chen S Langmuir; 2024 Jul; 40(29):15196-15204. PubMed ID: 39007690 [TBL] [Abstract][Full Text] [Related]
9. Defect by design: Harnessing the "petal effect" for advanced hydrophobic surface applications. Mo M; Bai X; Liu Z; Huang Z; Xu M; Ma L; Lai W; Mo Q; Xie S; Li Y; Huang Y; Xiao N; Zheng Y J Colloid Interface Sci; 2024 Nov; 673():37-48. PubMed ID: 38875796 [TBL] [Abstract][Full Text] [Related]
10. A theoretical approach to the relationship between wettability and surface microstructures of epidermal cells and structured cuticles of flower petals. Taneda H; Watanabe-Taneda A; Chhetry R; Ikeda H Ann Bot; 2015 May; 115(6):923-37. PubMed ID: 25851137 [TBL] [Abstract][Full Text] [Related]
11. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials. Schulte AJ; Droste DM; Koch K; Barthlott W Beilstein J Nanotechnol; 2011; 2():228-36. PubMed ID: 21977435 [TBL] [Abstract][Full Text] [Related]
12. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces. Xu P; Zhang Y; Li L; Lin Z; Zhu B; Chen W; Li G; Liu H; Xiao K; Xiong Y; Yang S; Lei Y; Xue L Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35561670 [TBL] [Abstract][Full Text] [Related]
13. Elucidating the lotus and rose-petal effects on hierarchical surfaces: Study of the effect of topographical scales on the contact angle hysteresis. Bami Chatenet Y; Valette S J Colloid Interface Sci; 2024 Dec; 676():355-367. PubMed ID: 39032418 [TBL] [Abstract][Full Text] [Related]
14. Black Silicon/Elastomer Composite Surface with Switchable Wettability and Adhesion between Lotus and Rose Petal Effects by Mechanical Strain. Park JK; Yang Z; Kim S ACS Appl Mater Interfaces; 2017 Sep; 9(38):33333-33340. PubMed ID: 28901732 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of droplet impingement on bioinspired surface: insights into spreading, anomalous stickiness and break-up. Roy D; Pandey K; Banik M; Mukherjee R; Basu S Proc Math Phys Eng Sci; 2019 Sep; 475(2229):20190260. PubMed ID: 31611721 [TBL] [Abstract][Full Text] [Related]
16. Dropwise Condensation on Multiscale Bioinspired Metallic Surfaces with Nanofeatures. Orejon D; Askounis A; Takata Y; Attinger D ACS Appl Mater Interfaces; 2019 Jul; 11(27):24735-24750. PubMed ID: 31180632 [TBL] [Abstract][Full Text] [Related]
17. The rose petal effect and the modes of superhydrophobicity. Bhushan B; Nosonovsky M Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4713-28. PubMed ID: 20855317 [TBL] [Abstract][Full Text] [Related]
18. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures. Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928 [TBL] [Abstract][Full Text] [Related]
19. One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods. Myint MT; Hornyak GL; Dutta J J Colloid Interface Sci; 2014 Feb; 415():32-8. PubMed ID: 24267327 [TBL] [Abstract][Full Text] [Related]
20. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal. Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]